ETH Price: $2,697.08 (-1.54%)

Contract

0x047eE5313F98E26Cc8177fA38877cB36292D2364

Overview

ETH Balance

0 ETH

ETH Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Transfer Ownersh...14666092024-07-29 16:00:57201 days ago1722268857IN
0x047eE531...6292D2364
0 ETH0.000000030.00100025

Latest 1 internal transaction

Parent Transaction Hash Block From To
13351262024-07-26 14:58:11204 days ago1722005891
0x047eE531...6292D2364
 Contract Creation0 ETH

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
OpWorldID

Compiler Version
v0.8.15+commit.e14f2714

Optimization Enabled:
Yes with 10000 runs

Other Settings:
london EvmVersion
File 1 of 33 : OpWorldID.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;

import {WorldIDBridge} from "./abstract/WorldIDBridge.sol";

import {IOpWorldID} from "./interfaces/IOpWorldID.sol";
import {CrossDomainOwnable3} from
    "@eth-optimism/contracts-bedrock/contracts/L2/CrossDomainOwnable3.sol";

/// @title Optimism World ID Bridge
/// @author Worldcoin
/// @notice A contract that manages the root history of the Semaphore identity merkle tree on
///         Optimism.
/// @dev This contract is deployed on Optimism and is called by the L1 Proxy contract for each new
///      root insertion.
contract OpWorldID is WorldIDBridge, CrossDomainOwnable3, IOpWorldID {
    ///////////////////////////////////////////////////////////////////////////////
    ///                                CONSTRUCTION                             ///
    ///////////////////////////////////////////////////////////////////////////////

    /// @notice Initializes the contract the depth of the associated merkle tree.
    ///
    /// @param _treeDepth The depth of the WorldID Semaphore merkle tree.
    constructor(uint8 _treeDepth) WorldIDBridge(_treeDepth) {}

    ///////////////////////////////////////////////////////////////////////////////
    ///                               ROOT MIRRORING                            ///
    ///////////////////////////////////////////////////////////////////////////////

    /// @notice This function is called by the state bridge contract when it forwards a new root to
    ///         the bridged WorldID.
    /// @dev    This function can revert if Optimism's CrossDomainMessenger stops processing proofs
    ///         or if OPLabs stops submitting them. Next iteration of Optimism's cross-domain messaging, will be
    ///         fully permissionless for message-passing, so this will not be an issue.
    ///         Sequencer needs to include changes to the CrossDomainMessenger contract on L1,
    ///         not economically penalized if messages are not included, however the fraud prover (Cannon)
    ///          can force the sequencer to include it.
    ///
    /// @param newRoot The value of the new root.
    ///
    /// @custom:reverts CannotOverwriteRoot If the root already exists in the root history.
    /// @custom:reverts string If the caller is not the owner.
    function receiveRoot(uint256 newRoot) external virtual onlyOwner {
        _receiveRoot(newRoot);
    }

    ///////////////////////////////////////////////////////////////////////////////
    ///                              DATA MANAGEMENT                            ///
    ///////////////////////////////////////////////////////////////////////////////

    /// @notice Sets the amount of time it takes for a root in the root history to expire.
    ///
    /// @param expiryTime The new amount of time it takes for a root to expire.
    ///
    /// @custom:reverts string If the caller is not the owner.
    function setRootHistoryExpiry(uint256 expiryTime) public virtual override onlyOwner {
        _setRootHistoryExpiry(expiryTime);
    }
}

File 2 of 33 : WorldIDBridge.sol
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;

import {IWorldID} from "../interfaces/IWorldID.sol";

import {SemaphoreTreeDepthValidator} from "../utils/SemaphoreTreeDepthValidator.sol";
import {SemaphoreVerifier} from "src/SemaphoreVerifier.sol";

/// @title Bridged World ID
/// @author Worldcoin
/// @notice A base contract for the WorldID state bridges that exist on other chains. The state
///         bridges manage the root history of the identity merkle tree on chains other than
///         mainnet.
/// @dev This contract abstracts the common functionality, allowing for easier understanding and
///      code reuse.
/// @dev This contract is very explicitly not able to be instantiated. Do not un-mark it as
///      `abstract`.
abstract contract WorldIDBridge is IWorldID {
    ///////////////////////////////////////////////////////////////////////////////
    ///                              CONTRACT DATA                              ///
    ///////////////////////////////////////////////////////////////////////////////

    /// @notice The depth of the merkle tree used to store identities.
    uint8 internal immutable treeDepth;

    /// @notice The amount of time a root is considered as valid on the bridged chain.
    uint256 internal ROOT_HISTORY_EXPIRY = 1 weeks;

    /// @notice The value of the latest merkle tree root.
    uint256 internal _latestRoot;

    /// @notice The mapping between the value of the merkle tree root and the timestamp at which it
    ///         entered the root history.
    mapping(uint256 => uint128) public rootHistory;

    /// @notice The time in the `rootHistory` mapping associated with a root that has never been
    ///         seen before.
    uint128 internal constant NULL_ROOT_TIME = 0;

    /// @notice The verifier instance needed to operate within the semaphore protocol.
    SemaphoreVerifier internal semaphoreVerifier = new SemaphoreVerifier();

    ///////////////////////////////////////////////////////////////////////////////
    ///                                  ERRORS                                 ///
    ///////////////////////////////////////////////////////////////////////////////

    /// @notice Emitted when the provided semaphore tree depth is unsupported.
    ///
    /// @param depth The tree depth that was passed.
    error UnsupportedTreeDepth(uint8 depth);

    /// @notice Emitted when attempting to validate a root that has expired.
    error ExpiredRoot();

    /// @notice Emitted when attempting to validate a root that has yet to be added to the root
    ///         history.
    error NonExistentRoot();

    /// @notice Emitted when attempting to update the timestamp for a root that already has one.
    error CannotOverwriteRoot();

    /// @notice Emitted if the latest root is requested but the bridge has not seen any roots yet.
    error NoRootsSeen();

    ///////////////////////////////////////////////////////////////////////////////
    ///                                  EVENTS                                 ///
    ///////////////////////////////////////////////////////////////////////////////

    /// @notice Emitted when a new root is received by the contract.
    ///
    /// @param root The value of the root that was added.
    /// @param timestamp The timestamp of insertion for the given root.
    event RootAdded(uint256 root, uint128 timestamp);

    /// @notice Emitted when the expiry time for the root history is updated.
    ///
    /// @param newExpiry The new expiry time.
    event RootHistoryExpirySet(uint256 newExpiry);

    ///////////////////////////////////////////////////////////////////////////////
    ///                               CONSTRUCTION                              ///
    ///////////////////////////////////////////////////////////////////////////////

    /// @notice Constructs a new instance of the state bridge.
    ///
    /// @param _treeDepth The depth of the identities merkle tree.
    constructor(uint8 _treeDepth) {
        if (!SemaphoreTreeDepthValidator.validate(_treeDepth)) {
            revert UnsupportedTreeDepth(_treeDepth);
        }

        treeDepth = _treeDepth;
    }

    ///////////////////////////////////////////////////////////////////////////////
    ///                              ROOT MIRRORING                             ///
    ///////////////////////////////////////////////////////////////////////////////

    /// @notice This function is called by the state bridge contract when it forwards a new root to
    ///         the bridged WorldID.
    /// @dev Intended to be called from a privilege-checked implementation of `receiveRoot` or an
    ///      equivalent operation.
    ///
    /// @param newRoot The value of the new root.
    ///
    /// @custom:reverts CannotOverwriteRoot If the root already exists in the root history.
    function _receiveRoot(uint256 newRoot) internal {
        uint256 existingTimestamp = rootHistory[newRoot];

        if (existingTimestamp != NULL_ROOT_TIME) {
            revert CannotOverwriteRoot();
        }

        uint128 currTimestamp = uint128(block.timestamp);

        _latestRoot = newRoot;
        rootHistory[newRoot] = currTimestamp;

        emit RootAdded(newRoot, currTimestamp);
    }

    /// @notice Reverts if the provided root value is not valid.
    /// @dev A root is valid if it is either the latest root, or not the latest root but has not
    ///      expired.
    ///
    /// @param root The root of the merkle tree to check for validity.
    ///
    /// @custom:reverts ExpiredRoot If the provided `root` has expired.
    /// @custom:reverts NonExistentRoot If the provided `root` does not exist in the history.
    function requireValidRoot(uint256 root) internal view {
        // The latest root is always valid.
        if (root == _latestRoot) {
            return;
        }

        // Otherwise, we need to check things via the timestamp.
        uint128 rootTimestamp = rootHistory[root];

        // A root does not exist if it has no associated timestamp.
        if (rootTimestamp == 0) {
            revert NonExistentRoot();
        }

        // A root is no longer valid if it has expired.
        if (block.timestamp - rootTimestamp > ROOT_HISTORY_EXPIRY) {
            revert ExpiredRoot();
        }
    }

    ///////////////////////////////////////////////////////////////////////////////
    ///                             SEMAPHORE PROOFS                            ///
    ///////////////////////////////////////////////////////////////////////////////

    /// @notice A verifier for the semaphore protocol.
    /// @dev Note that a double-signaling check is not included here, and should be carried by the
    ///      caller.
    ///
    /// @param root The root of the Merkle tree
    /// @param signalHash A keccak256 hash of the Semaphore signal
    /// @param nullifierHash The nullifier hash
    /// @param externalNullifierHash A keccak256 hash of the external nullifier
    /// @param proof The zero-knowledge proof
    ///
    /// @custom:reverts string If the zero-knowledge proof cannot be verified for the public inputs.
    function verifyProof(
        uint256 root,
        uint256 signalHash,
        uint256 nullifierHash,
        uint256 externalNullifierHash,
        uint256[8] calldata proof
    ) public view virtual {
        // Check the preconditions on the inputs.
        requireValidRoot(root);

        // With that done we can now verify the proof.
        semaphoreVerifier.verifyProof(
            proof, [root, nullifierHash, signalHash, externalNullifierHash]
        );
    }

    ///////////////////////////////////////////////////////////////////////////////
    ///                              DATA MANAGEMENT                            ///
    ///////////////////////////////////////////////////////////////////////////////

    /// @notice Gets the value of the latest root.
    ///
    /// @custom:reverts NoRootsSeen If there is no latest root.
    function latestRoot() public view virtual returns (uint256) {
        if (_latestRoot == 0) {
            revert NoRootsSeen();
        }

        return _latestRoot;
    }

    /// @notice Gets the amount of time it takes for a root in the root history to expire.
    function rootHistoryExpiry() public view virtual returns (uint256) {
        return ROOT_HISTORY_EXPIRY;
    }

    /// @notice Sets the amount of time it takes for a root in the root history to expire.
    /// @dev When implementing this function, ensure that it is guarded on `onlyOwner`.
    ///
    /// @param expiryTime The new amount of time it takes for a root to expire.
    function setRootHistoryExpiry(uint256 expiryTime) public virtual;

    /// @notice Sets the amount of time it takes for a root in the root history to expire.
    /// @dev Intended to be called from a privilege-checked implementation of `receiveRoot`.
    ///
    /// @param expiryTime The new amount of time it takes for a root to expire.
    function _setRootHistoryExpiry(uint256 expiryTime) internal virtual {
        ROOT_HISTORY_EXPIRY = expiryTime;

        emit RootHistoryExpirySet(expiryTime);
    }

    /// @notice Gets the Semaphore tree depth the contract was initialized with.
    function getTreeDepth() public view virtual returns (uint8) {
        return treeDepth;
    }
}

File 3 of 33 : IOpWorldID.sol
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;

/// @title Interface for the OpWorldID contract
/// @author Worldcoin
/// @custom:usage abi.encodeCall(IOpWorldID.receiveRoot, (_newRoot, _supersedeTimestamp));
interface IOpWorldID {
    ////////////////////////////////////////////////////////////////////////////////
    ///                               ROOT MIRRORING                            ///
    ///////////////////////////////////////////////////////////////////////////////

    /// @notice This function is called by the state bridge contract when it forwards a new root to
    ///         the bridged WorldID.
    /// @dev    This function can revert if Optimism's CrossDomainMessenger stops processing proofs
    ///         or if OPLabs stops submitting them. Next iteration of Optimism's cross-domain messaging, will be
    ///         fully permissionless for message-passing, so this will not be an issue.
    ///         Sequencer needs to include changes to the CrossDomainMessenger contract on L1, not economically penalized
    ///         if messages are not included, however the fraud prover (Cannon) can force the sequencer to include it.
    ///
    /// @param newRoot The value of the new root.
    ///
    /// @custom:reverts CannotOverwriteRoot If the root already exists in the root history.
    /// @custom:reverts string If the caller is not the owner.
    function receiveRoot(uint256 newRoot) external;
}

File 4 of 33 : CrossDomainOwnable3.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { Predeploys } from "../libraries/Predeploys.sol";
import { L2CrossDomainMessenger } from "./L2CrossDomainMessenger.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";

/**
 * @title CrossDomainOwnable3
 * @notice This contract extends the OpenZeppelin `Ownable` contract for L2 contracts to be owned
 *         by contracts on either L1 or L2. Note that this contract is meant to be used with systems
 *         that use the CrossDomainMessenger system. It will not work if the OptimismPortal is
 *         used directly.
 */
abstract contract CrossDomainOwnable3 is Ownable {
    /**
     * @notice If true, the contract uses the cross domain _checkOwner function override. If false
     *         it uses the standard Ownable _checkOwner function.
     */
    bool public isLocal = true;

    /**
     * @notice Emits when ownership of the contract is transferred. Includes the
     *         isLocal field in addition to the standard `Ownable` OwnershipTransferred event.
     */
    event OwnershipTransferred(
        address indexed previousOwner,
        address indexed newOwner,
        bool isLocal
    );

    /**
     * @notice Allows for ownership to be transferred with specifying the locality.
     * @param _owner   The new owner of the contract.
     * @param _isLocal Configures the locality of the ownership.
     */
    function transferOwnership(address _owner, bool _isLocal) external onlyOwner {
        require(_owner != address(0), "CrossDomainOwnable3: new owner is the zero address");

        address oldOwner = owner();
        _transferOwnership(_owner);
        isLocal = _isLocal;

        emit OwnershipTransferred(oldOwner, _owner, _isLocal);
    }

    /**
     * @notice Overrides the implementation of the `onlyOwner` modifier to check that the unaliased
     *         `xDomainMessageSender` is the owner of the contract. This value is set to the caller
     *         of the L1CrossDomainMessenger.
     */
    function _checkOwner() internal view override {
        if (isLocal) {
            require(owner() == msg.sender, "CrossDomainOwnable3: caller is not the owner");
        } else {
            L2CrossDomainMessenger messenger = L2CrossDomainMessenger(
                Predeploys.L2_CROSS_DOMAIN_MESSENGER
            );

            require(
                msg.sender == address(messenger),
                "CrossDomainOwnable3: caller is not the messenger"
            );

            require(
                owner() == messenger.xDomainMessageSender(),
                "CrossDomainOwnable3: caller is not the owner"
            );
        }
    }
}

File 5 of 33 : IWorldID.sol
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;

/// @title WorldID Interface
/// @author Worldcoin
/// @notice The interface to the Semaphore Groth16 proof verification for WorldID.
/// @custom:usage IWorldID(worldIDIdentityMangerAddress).verifyProof(root, signalHash, nullifierHash, externalNullifierHash, proof);
interface IWorldID {
    /// @notice Verifies a WorldID zero knowledge proof.
    /// @dev Note that a double-signaling check is not included here, and should be carried by the
    ///      caller.
    /// @dev It is highly recommended that the implementation is restricted to `view` if possible.
    ///
    /// @param root The of the Merkle tree
    /// @param signalHash A keccak256 hash of the Semaphore signal
    /// @param nullifierHash The nullifier hash
    /// @param externalNullifierHash A keccak256 hash of the external nullifier
    /// @param proof The zero-knowledge proof
    ///
    /// @custom:reverts string If the `proof` is invalid.
    function verifyProof(
        uint256 root,
        uint256 signalHash,
        uint256 nullifierHash,
        uint256 externalNullifierHash,
        uint256[8] calldata proof
    ) external;
}

File 6 of 33 : SemaphoreTreeDepthValidator.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.15;

/// @title Semaphore tree depth validator
/// @author Worldcoin
library SemaphoreTreeDepthValidator {
    /// @notice Checks if the provided `treeDepth` is among supported depths.
    ///
    /// @param treeDepth The tree depth to validate.
    /// @return supportedDepth Returns `true` if `treeDepth` is between 16 and 32
    function validate(uint8 treeDepth) internal pure returns (bool supportedDepth) {
        uint8 minDepth = 16;
        uint8 maxDepth = 32;
        return treeDepth >= minDepth && treeDepth <= maxDepth;
    }
}

File 7 of 33 : SemaphoreVerifier.sol
// SPDX-License-Identifier: MIT

import {ISemaphoreVerifier} from "src/interfaces/ISemaphoreVerifier.sol";

pragma solidity ^0.8.0;

/// @title Groth16 verifier template.
/// @author Remco Bloemen
/// @notice Supports verifying Groth16 proofs. Proofs can be in uncompressed
/// (256 bytes) and compressed (128 bytes) format. A view function is provided
/// to compress proofs.
/// @notice See <https://2π.com/23/bn254-compression> for further explanation.
contract SemaphoreVerifier is ISemaphoreVerifier {
    /// Some of the provided public input values are larger than the field modulus.
    /// @dev Public input elements are not automatically reduced, as this is can be
    /// a dangerous source of bugs.
    error PublicInputNotInField();

    /// The proof is invalid.
    /// @dev This can mean that provided Groth16 proof points are not on their
    /// curves, that pairing equation fails, or that the proof is not for the
    /// provided public input.
    error ProofInvalid();

    // Addresses of precompiles
    uint256 constant PRECOMPILE_MODEXP = 0x05;
    uint256 constant PRECOMPILE_ADD = 0x06;
    uint256 constant PRECOMPILE_MUL = 0x07;
    uint256 constant PRECOMPILE_VERIFY = 0x08;

    // Base field Fp order P and scalar field Fr order R.
    // For BN254 these are computed as follows:
    //     t = 4965661367192848881
    //     P = 36⋅t⁴ + 36⋅t³ + 24⋅t² + 6⋅t + 1
    //     R = 36⋅t⁴ + 36⋅t³ + 18⋅t² + 6⋅t + 1
    uint256 constant P = 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47;
    uint256 constant R = 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001;

    // Extension field Fp2 = Fp[i] / (i² + 1)
    // Note: This is the complex extension field of Fp with i² = -1.
    //       Values in Fp2 are represented as a pair of Fp elements (a₀, a₁) as a₀ + a₁⋅i.
    // Note: The order of Fp2 elements is *opposite* that of the pairing contract, which
    //       expects Fp2 elements in order (a₁, a₀). This is also the order in which
    //       Fp2 elements are encoded in the public interface as this became convention.

    // Constants in Fp
    uint256 constant FRACTION_1_2_FP =
        0x183227397098d014dc2822db40c0ac2ecbc0b548b438e5469e10460b6c3e7ea4;
    uint256 constant FRACTION_27_82_FP =
        0x2b149d40ceb8aaae81be18991be06ac3b5b4c5e559dbefa33267e6dc24a138e5;
    uint256 constant FRACTION_3_82_FP =
        0x2fcd3ac2a640a154eb23960892a85a68f031ca0c8344b23a577dcf1052b9e775;

    // Exponents for inversions and square roots mod P
    uint256 constant EXP_INVERSE_FP =
        0x30644E72E131A029B85045B68181585D97816A916871CA8D3C208C16D87CFD45; // P - 2
    uint256 constant EXP_SQRT_FP = 0xC19139CB84C680A6E14116DA060561765E05AA45A1C72A34F082305B61F3F52; // (P + 1) / 4;

    // Groth16 alpha point in G1
    uint256 constant ALPHA_X =
        20491192805390485299153009773594534940189261866228447918068658471970481763042;
    uint256 constant ALPHA_Y =
        9383485363053290200918347156157836566562967994039712273449902621266178545958;

    // Groth16 beta point in G2 in powers of i
    uint256 constant BETA_NEG_X_0 =
        6375614351688725206403948262868962793625744043794305715222011528459656738731;
    uint256 constant BETA_NEG_X_1 =
        4252822878758300859123897981450591353533073413197771768651442665752259397132;
    uint256 constant BETA_NEG_Y_0 =
        11383000245469012944693504663162918391286475477077232690815866754273895001727;
    uint256 constant BETA_NEG_Y_1 =
        41207766310529818958173054109690360505148424997958324311878202295167071904;

    // Groth16 gamma point in G2 in powers of i
    uint256 constant GAMMA_NEG_X_0 =
        10857046999023057135944570762232829481370756359578518086990519993285655852781;
    uint256 constant GAMMA_NEG_X_1 =
        11559732032986387107991004021392285783925812861821192530917403151452391805634;
    uint256 constant GAMMA_NEG_Y_0 =
        13392588948715843804641432497768002650278120570034223513918757245338268106653;
    uint256 constant GAMMA_NEG_Y_1 =
        17805874995975841540914202342111839520379459829704422454583296818431106115052;

    // Groth16 delta point in G2 in powers of i
    uint256 constant DELTA_NEG_X_0 =
        15028154694713144242204861571552635520290993855826554325002991692907421516918;
    uint256 constant DELTA_NEG_X_1 =
        10202326166286888893675634318107715186834588694714750762952081034135561546271;
    uint256 constant DELTA_NEG_Y_0 =
        9121952986466441409625823112409402110610350380222160673756836983949377617226;
    uint256 constant DELTA_NEG_Y_1 =
        3402203030459169245973828223647408421795734658790470725360311404592929738724;

    // Constant and public input points
    uint256 constant CONSTANT_X =
        1452272927738590248356371174422184656932731110936062990115610832462181634644;
    uint256 constant CONSTANT_Y =
        3608050114233210789542189629343107890943266759827387991788718454179833288695;
    uint256 constant PUB_0_X =
        14798240452388909327945424685903532333765637883272751382037716636327236955001;
    uint256 constant PUB_0_Y =
        10773894897711848209682368488916121016695006898681985691467605219098835500201;
    uint256 constant PUB_1_X =
        17204267933132009093604099819536245144503489322639121825381131096467570698650;
    uint256 constant PUB_1_Y =
        7704298975420304156332734115679983371345754866278811368869074990486717531131;
    uint256 constant PUB_2_X =
        8060465662017324080560848316478407038163145149983639907596180500095598669247;
    uint256 constant PUB_2_Y =
        20475082166427284188002500222093571716651248980245637602667562336751029856573;
    uint256 constant PUB_3_X =
        7457566682692308112726332096733260585025339741083447785327706250123165087868;
    uint256 constant PUB_3_Y =
        11904519443874922292602150685069370036383697877657723976244907400392778002614;

    /// Negation in Fp.
    /// @notice Returns a number x such that a + x = 0 in Fp.
    /// @notice The input does not need to be reduced.
    /// @param a the base
    /// @return x the result
    function negate(uint256 a) internal pure returns (uint256 x) {
        unchecked {
            x = (P - (a % P)) % P; // Modulo is cheaper than branching
        }
    }

    /// Exponentiation in Fp.
    /// @notice Returns a number x such that a ^ e = x in Fp.
    /// @notice The input does not need to be reduced.
    /// @param a the base
    /// @param e the exponent
    /// @return x the result
    function exp(uint256 a, uint256 e) internal view returns (uint256 x) {
        bool success;
        assembly ("memory-safe") {
            let f := mload(0x40)
            mstore(f, 0x20)
            mstore(add(f, 0x20), 0x20)
            mstore(add(f, 0x40), 0x20)
            mstore(add(f, 0x60), a)
            mstore(add(f, 0x80), e)
            mstore(add(f, 0xa0), P)
            success := staticcall(gas(), PRECOMPILE_MODEXP, f, 0xc0, f, 0x20)
            x := mload(f)
        }
        if (!success) {
            // Exponentiation failed.
            // Should not happen.
            revert ProofInvalid();
        }
    }

    /// Invertsion in Fp.
    /// @notice Returns a number x such that a * x = 1 in Fp.
    /// @notice The input does not need to be reduced.
    /// @notice Reverts with ProofInvalid() if the inverse does not exist
    /// @param a the input
    /// @return x the solution
    function invert_Fp(uint256 a) internal view returns (uint256 x) {
        x = exp(a, EXP_INVERSE_FP);
        if (mulmod(a, x, P) != 1) {
            // Inverse does not exist.
            // Can only happen during G2 point decompression.
            revert ProofInvalid();
        }
    }

    /// Square root in Fp.
    /// @notice Returns a number x such that x * x = a in Fp.
    /// @notice Will revert with InvalidProof() if the input is not a square
    /// or not reduced.
    /// @param a the square
    /// @return x the solution
    function sqrt_Fp(uint256 a) internal view returns (uint256 x) {
        x = exp(a, EXP_SQRT_FP);
        if (mulmod(x, x, P) != a) {
            // Square root does not exist or a is not reduced.
            // Happens when G1 point is not on curve.
            revert ProofInvalid();
        }
    }

    /// Square test in Fp.
    /// @notice Returns wheter a number x exists such that x * x = a in Fp.
    /// @notice Will revert with InvalidProof() if the input is not a square
    /// or not reduced.
    /// @param a the square
    /// @return x the solution
    function isSquare_Fp(uint256 a) internal view returns (bool) {
        uint256 x = exp(a, EXP_SQRT_FP);
        return mulmod(x, x, P) == a;
    }

    /// Square root in Fp2.
    /// @notice Fp2 is the complex extension Fp[i]/(i^2 + 1). The input is
    /// a0 + a1 ⋅ i and the result is x0 + x1 ⋅ i.
    /// @notice Will revert with InvalidProof() if
    ///   * the input is not a square,
    ///   * the hint is incorrect, or
    ///   * the input coefficents are not reduced.
    /// @param a0 The real part of the input.
    /// @param a1 The imaginary part of the input.
    /// @param hint A hint which of two possible signs to pick in the equation.
    /// @return x0 The real part of the square root.
    /// @return x1 The imaginary part of the square root.
    function sqrt_Fp2(uint256 a0, uint256 a1, bool hint)
        internal
        view
        returns (uint256 x0, uint256 x1)
    {
        // If this square root reverts there is no solution in Fp2.
        uint256 d = sqrt_Fp(addmod(mulmod(a0, a0, P), mulmod(a1, a1, P), P));
        if (hint) {
            d = negate(d);
        }
        // If this square root reverts there is no solution in Fp2.
        x0 = sqrt_Fp(mulmod(addmod(a0, d, P), FRACTION_1_2_FP, P));
        x1 = mulmod(a1, invert_Fp(mulmod(x0, 2, P)), P);

        // Check result to make sure we found a root.
        // Note: this also fails if a0 or a1 is not reduced.
        if (
            a0 != addmod(mulmod(x0, x0, P), negate(mulmod(x1, x1, P)), P)
                || a1 != mulmod(2, mulmod(x0, x1, P), P)
        ) {
            revert ProofInvalid();
        }
    }

    /// Compress a G1 point.
    /// @notice Reverts with InvalidProof if the coordinates are not reduced
    /// or if the point is not on the curve.
    /// @notice The point at infinity is encoded as (0,0) and compressed to 0.
    /// @param x The X coordinate in Fp.
    /// @param y The Y coordinate in Fp.
    /// @return c The compresed point (x with one signal bit).
    function compress_g1(uint256 x, uint256 y) internal view returns (uint256 c) {
        if (x >= P || y >= P) {
            // G1 point not in field.
            revert ProofInvalid();
        }
        if (x == 0 && y == 0) {
            // Point at infinity
            return 0;
        }

        // Note: sqrt_Fp reverts if there is no solution, i.e. the x coordinate is invalid.
        uint256 y_pos = sqrt_Fp(addmod(mulmod(mulmod(x, x, P), x, P), 3, P));
        if (y == y_pos) {
            return (x << 1) | 0;
        } else if (y == negate(y_pos)) {
            return (x << 1) | 1;
        } else {
            // G1 point not on curve.
            revert ProofInvalid();
        }
    }

    /// Decompress a G1 point.
    /// @notice Reverts with InvalidProof if the input does not represent a valid point.
    /// @notice The point at infinity is encoded as (0,0) and compressed to 0.
    /// @param c The compresed point (x with one signal bit).
    /// @return x The X coordinate in Fp.
    /// @return y The Y coordinate in Fp.
    function decompress_g1(uint256 c) internal view returns (uint256 x, uint256 y) {
        // Note that X = 0 is not on the curve since 0³ + 3 = 3 is not a square.
        // so we can use it to represent the point at infinity.
        if (c == 0) {
            // Point at infinity as encoded in EIP196 and EIP197.
            return (0, 0);
        }
        bool negate_point = c & 1 == 1;
        x = c >> 1;
        if (x >= P) {
            // G1 x coordinate not in field.
            revert ProofInvalid();
        }

        // Note: (x³ + 3) is irreducible in Fp, so it can not be zero and therefore
        //       y can not be zero.
        // Note: sqrt_Fp reverts if there is no solution, i.e. the point is not on the curve.
        y = sqrt_Fp(addmod(mulmod(mulmod(x, x, P), x, P), 3, P));
        if (negate_point) {
            y = negate(y);
        }
    }

    /// Compress a G2 point.
    /// @notice Reverts with InvalidProof if the coefficients are not reduced
    /// or if the point is not on the curve.
    /// @notice The G2 curve is defined over the complex extension Fp[i]/(i^2 + 1)
    /// with coordinates (x0 + x1 ⋅ i, y0 + y1 ⋅ i).
    /// @notice The point at infinity is encoded as (0,0,0,0) and compressed to (0,0).
    /// @param x0 The real part of the X coordinate.
    /// @param x1 The imaginary poart of the X coordinate.
    /// @param y0 The real part of the Y coordinate.
    /// @param y1 The imaginary part of the Y coordinate.
    /// @return c0 The first half of the compresed point (x0 with two signal bits).
    /// @return c1 The second half of the compressed point (x1 unmodified).
    function compress_g2(uint256 x0, uint256 x1, uint256 y0, uint256 y1)
        internal
        view
        returns (uint256 c0, uint256 c1)
    {
        if (x0 >= P || x1 >= P || y0 >= P || y1 >= P) {
            // G2 point not in field.
            revert ProofInvalid();
        }
        if ((x0 | x1 | y0 | y1) == 0) {
            // Point at infinity
            return (0, 0);
        }

        // Compute y^2
        // Note: shadowing variables and scoping to avoid stack-to-deep.
        uint256 y0_pos;
        uint256 y1_pos;
        {
            uint256 n3ab = mulmod(mulmod(x0, x1, P), P - 3, P);
            uint256 a_3 = mulmod(mulmod(x0, x0, P), x0, P);
            uint256 b_3 = mulmod(mulmod(x1, x1, P), x1, P);
            y0_pos = addmod(FRACTION_27_82_FP, addmod(a_3, mulmod(n3ab, x1, P), P), P);
            y1_pos = negate(addmod(FRACTION_3_82_FP, addmod(b_3, mulmod(n3ab, x0, P), P), P));
        }

        // Determine hint bit
        // If this sqrt fails the x coordinate is not on the curve.
        bool hint;
        {
            uint256 d = sqrt_Fp(addmod(mulmod(y0_pos, y0_pos, P), mulmod(y1_pos, y1_pos, P), P));
            hint = !isSquare_Fp(mulmod(addmod(y0_pos, d, P), FRACTION_1_2_FP, P));
        }

        // Recover y
        (y0_pos, y1_pos) = sqrt_Fp2(y0_pos, y1_pos, hint);
        if (y0 == y0_pos && y1 == y1_pos) {
            c0 = (x0 << 2) | (hint ? 2 : 0) | 0;
            c1 = x1;
        } else if (y0 == negate(y0_pos) && y1 == negate(y1_pos)) {
            c0 = (x0 << 2) | (hint ? 2 : 0) | 1;
            c1 = x1;
        } else {
            // G1 point not on curve.
            revert ProofInvalid();
        }
    }

    /// Decompress a G2 point.
    /// @notice Reverts with InvalidProof if the input does not represent a valid point.
    /// @notice The G2 curve is defined over the complex extension Fp[i]/(i^2 + 1)
    /// with coordinates (x0 + x1 ⋅ i, y0 + y1 ⋅ i).
    /// @notice The point at infinity is encoded as (0,0,0,0) and compressed to (0,0).
    /// @param c0 The first half of the compresed point (x0 with two signal bits).
    /// @param c1 The second half of the compressed point (x1 unmodified).
    /// @return x0 The real part of the X coordinate.
    /// @return x1 The imaginary poart of the X coordinate.
    /// @return y0 The real part of the Y coordinate.
    /// @return y1 The imaginary part of the Y coordinate.
    function decompress_g2(uint256 c0, uint256 c1)
        internal
        view
        returns (uint256 x0, uint256 x1, uint256 y0, uint256 y1)
    {
        // Note that X = (0, 0) is not on the curve since 0³ + 3/(9 + i) is not a square.
        // so we can use it to represent the point at infinity.
        if (c0 == 0 && c1 == 0) {
            // Point at infinity as encoded in EIP197.
            return (0, 0, 0, 0);
        }
        bool negate_point = c0 & 1 == 1;
        bool hint = c0 & 2 == 2;
        x0 = c0 >> 2;
        x1 = c1;
        if (x0 >= P || x1 >= P) {
            // G2 x0 or x1 coefficient not in field.
            revert ProofInvalid();
        }

        uint256 n3ab = mulmod(mulmod(x0, x1, P), P - 3, P);
        uint256 a_3 = mulmod(mulmod(x0, x0, P), x0, P);
        uint256 b_3 = mulmod(mulmod(x1, x1, P), x1, P);

        y0 = addmod(FRACTION_27_82_FP, addmod(a_3, mulmod(n3ab, x1, P), P), P);
        y1 = negate(addmod(FRACTION_3_82_FP, addmod(b_3, mulmod(n3ab, x0, P), P), P));

        // Note: sqrt_Fp2 reverts if there is no solution, i.e. the point is not on the curve.
        // Note: (X³ + 3/(9 + i)) is irreducible in Fp2, so y can not be zero.
        //       But y0 or y1 may still independently be zero.
        (y0, y1) = sqrt_Fp2(y0, y1, hint);
        if (negate_point) {
            y0 = negate(y0);
            y1 = negate(y1);
        }
    }

    /// Compute the public input linear combination.
    /// @notice Reverts with PublicInputNotInField if the input is not in the field.
    /// @notice Computes the multi-scalar-multiplication of the public input
    /// elements and the verification key including the constant term.
    /// @param input The public inputs. These are elements of the scalar field Fr.
    /// @return x The X coordinate of the resulting G1 point.
    /// @return y The Y coordinate of the resulting G1 point.
    function publicInputMSM(uint256[4] calldata input)
        internal
        view
        returns (uint256 x, uint256 y)
    {
        // Note: The ECMUL precompile does not reject unreduced values, so we check this.
        // Note: Unrolling this loop does not cost much extra in code-size, the bulk of the
        //       code-size is in the PUB_ constants.
        // ECMUL has input (x, y, scalar) and output (x', y').
        // ECADD has input (x1, y1, x2, y2) and output (x', y').
        // We call them such that ecmul output is already in the second point
        // argument to ECADD so we can have a tight loop.
        bool success = true;
        assembly ("memory-safe") {
            let f := mload(0x40)
            let g := add(f, 0x40)
            let s
            mstore(f, CONSTANT_X)
            mstore(add(f, 0x20), CONSTANT_Y)
            mstore(g, PUB_0_X)
            mstore(add(g, 0x20), PUB_0_Y)
            s := calldataload(input)
            mstore(add(g, 0x40), s)
            success := and(success, lt(s, R))
            success := and(success, staticcall(gas(), PRECOMPILE_MUL, g, 0x60, g, 0x40))
            success := and(success, staticcall(gas(), PRECOMPILE_ADD, f, 0x80, f, 0x40))
            mstore(g, PUB_1_X)
            mstore(add(g, 0x20), PUB_1_Y)
            s := calldataload(add(input, 32))
            mstore(add(g, 0x40), s)
            success := and(success, lt(s, R))
            success := and(success, staticcall(gas(), PRECOMPILE_MUL, g, 0x60, g, 0x40))
            success := and(success, staticcall(gas(), PRECOMPILE_ADD, f, 0x80, f, 0x40))
            mstore(g, PUB_2_X)
            mstore(add(g, 0x20), PUB_2_Y)
            s := calldataload(add(input, 64))
            mstore(add(g, 0x40), s)
            success := and(success, lt(s, R))
            success := and(success, staticcall(gas(), PRECOMPILE_MUL, g, 0x60, g, 0x40))
            success := and(success, staticcall(gas(), PRECOMPILE_ADD, f, 0x80, f, 0x40))
            mstore(g, PUB_3_X)
            mstore(add(g, 0x20), PUB_3_Y)
            s := calldataload(add(input, 96))
            mstore(add(g, 0x40), s)
            success := and(success, lt(s, R))
            success := and(success, staticcall(gas(), PRECOMPILE_MUL, g, 0x60, g, 0x40))
            success := and(success, staticcall(gas(), PRECOMPILE_ADD, f, 0x80, f, 0x40))
            x := mload(f)
            y := mload(add(f, 0x20))
        }
        if (!success) {
            // Either Public input not in field, or verification key invalid.
            // We assume the contract is correctly generated, so the verification key is valid.
            revert PublicInputNotInField();
        }
    }

    /// Compress a proof.
    /// @notice Will revert with InvalidProof if the curve points are invalid,
    /// but does not verify the proof itself.
    /// @param proof The uncompressed Groth16 proof. Elements are in the same order as for
    /// verifyProof. I.e. Groth16 points (A, B, C) encoded as in EIP-197.
    /// @return compressed The compressed proof. Elements are in the same order as for
    /// verifyCompressedProof. I.e. points (A, B, C) in compressed format.
    function compressProof(uint256[8] calldata proof)
        public
        view
        returns (uint256[4] memory compressed)
    {
        compressed[0] = compress_g1(proof[0], proof[1]);
        (compressed[2], compressed[1]) = compress_g2(proof[3], proof[2], proof[5], proof[4]);
        compressed[3] = compress_g1(proof[6], proof[7]);
    }

    /// Verify a Groth16 proof with compressed points.
    /// @notice Reverts with InvalidProof if the proof is invalid or
    /// with PublicInputNotInField the public input is not reduced.
    /// @notice There is no return value. If the function does not revert, the
    /// proof was succesfully verified.
    /// @param compressedProof the points (A, B, C) in compressed format
    /// matching the output of compressProof.
    /// @param input the public input field elements in the scalar field Fr.
    /// Elements must be reduced.
    function verifyCompressedProof(uint256[4] calldata compressedProof, uint256[4] calldata input)
        public
        view
    {
        (uint256 Ax, uint256 Ay) = decompress_g1(compressedProof[0]);
        (uint256 Bx0, uint256 Bx1, uint256 By0, uint256 By1) =
            decompress_g2(compressedProof[2], compressedProof[1]);
        (uint256 Cx, uint256 Cy) = decompress_g1(compressedProof[3]);
        (uint256 Lx, uint256 Ly) = publicInputMSM(input);

        // Verify the pairing
        // Note: The precompile expects the F2 coefficients in big-endian order.
        // Note: The pairing precompile rejects unreduced values, so we won't check that here.
        uint256[24] memory pairings;
        // e(A, B)
        pairings[0] = Ax;
        pairings[1] = Ay;
        pairings[2] = Bx1;
        pairings[3] = Bx0;
        pairings[4] = By1;
        pairings[5] = By0;
        // e(C, -δ)
        pairings[6] = Cx;
        pairings[7] = Cy;
        pairings[8] = DELTA_NEG_X_1;
        pairings[9] = DELTA_NEG_X_0;
        pairings[10] = DELTA_NEG_Y_1;
        pairings[11] = DELTA_NEG_Y_0;
        // e(α, -β)
        pairings[12] = ALPHA_X;
        pairings[13] = ALPHA_Y;
        pairings[14] = BETA_NEG_X_1;
        pairings[15] = BETA_NEG_X_0;
        pairings[16] = BETA_NEG_Y_1;
        pairings[17] = BETA_NEG_Y_0;
        // e(L_pub, -γ)
        pairings[18] = Lx;
        pairings[19] = Ly;
        pairings[20] = GAMMA_NEG_X_1;
        pairings[21] = GAMMA_NEG_X_0;
        pairings[22] = GAMMA_NEG_Y_1;
        pairings[23] = GAMMA_NEG_Y_0;

        // Check pairing equation.
        bool success;
        uint256[1] memory output;
        assembly ("memory-safe") {
            success := staticcall(gas(), PRECOMPILE_VERIFY, pairings, 0x300, output, 0x20)
        }
        if (!success || output[0] != 1) {
            // Either proof or verification key invalid.
            // We assume the contract is correctly generated, so the verification key is valid.
            revert ProofInvalid();
        }
    }

    /// Verify an uncompressed Groth16 proof.
    /// @notice Reverts with InvalidProof if the proof is invalid or
    /// with PublicInputNotInField the public input is not reduced.
    /// @notice There is no return value. If the function does not revert, the
    /// proof was succesfully verified.
    /// @param proof the points (A, B, C) in EIP-197 format matching the output
    /// of compressProof.
    /// @param input the public input field elements in the scalar field Fr.
    /// Elements must be reduced.
    function verifyProof(uint256[8] calldata proof, uint256[4] calldata input) public view {
        (uint256 x, uint256 y) = publicInputMSM(input);

        // Note: The precompile expects the F2 coefficients in big-endian order.
        // Note: The pairing precompile rejects unreduced values, so we won't check that here.

        bool success;
        assembly ("memory-safe") {
            let f := mload(0x40) // Free memory pointer.

            // Copy points (A, B, C) to memory. They are already in correct encoding.
            // This is pairing e(A, B) and G1 of e(C, -δ).
            calldatacopy(f, proof, 0x100)

            // Complete e(C, -δ) and write e(α, -β), e(L_pub, -γ) to memory.
            // OPT: This could be better done using a single codecopy, but
            //      Solidity (unlike standalone Yul) doesn't provide a way to
            //      to do this.
            mstore(add(f, 0x100), DELTA_NEG_X_1)
            mstore(add(f, 0x120), DELTA_NEG_X_0)
            mstore(add(f, 0x140), DELTA_NEG_Y_1)
            mstore(add(f, 0x160), DELTA_NEG_Y_0)
            mstore(add(f, 0x180), ALPHA_X)
            mstore(add(f, 0x1a0), ALPHA_Y)
            mstore(add(f, 0x1c0), BETA_NEG_X_1)
            mstore(add(f, 0x1e0), BETA_NEG_X_0)
            mstore(add(f, 0x200), BETA_NEG_Y_1)
            mstore(add(f, 0x220), BETA_NEG_Y_0)
            mstore(add(f, 0x240), x)
            mstore(add(f, 0x260), y)
            mstore(add(f, 0x280), GAMMA_NEG_X_1)
            mstore(add(f, 0x2a0), GAMMA_NEG_X_0)
            mstore(add(f, 0x2c0), GAMMA_NEG_Y_1)
            mstore(add(f, 0x2e0), GAMMA_NEG_Y_0)

            // Check pairing equation.
            success := staticcall(gas(), PRECOMPILE_VERIFY, f, 0x300, f, 0x20)
            // Also check returned value (both are either 1 or 0).
            success := and(success, mload(f))
        }
        if (!success) {
            // Either proof or verification key invalid.
            // We assume the contract is correctly generated, so the verification key is valid.
            revert ProofInvalid();
        }
    }
}

File 8 of 33 : Predeploys.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
 * @title Predeploys
 * @notice Contains constant addresses for contracts that are pre-deployed to the L2 system.
 */
library Predeploys {
    /**
     * @notice Address of the L2ToL1MessagePasser predeploy.
     */
    address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;

    /**
     * @notice Address of the L2CrossDomainMessenger predeploy.
     */
    address internal constant L2_CROSS_DOMAIN_MESSENGER =
        0x4200000000000000000000000000000000000007;

    /**
     * @notice Address of the L2StandardBridge predeploy.
     */
    address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;

    /**
     * @notice Address of the L2ERC721Bridge predeploy.
     */
    address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;

    /**
     * @notice Address of the SequencerFeeWallet predeploy.
     */
    address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;

    /**
     * @notice Address of the OptimismMintableERC20Factory predeploy.
     */
    address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY =
        0x4200000000000000000000000000000000000012;

    /**
     * @notice Address of the OptimismMintableERC721Factory predeploy.
     */
    address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY =
        0x4200000000000000000000000000000000000017;

    /**
     * @notice Address of the L1Block predeploy.
     */
    address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;

    /**
     * @notice Address of the GasPriceOracle predeploy. Includes fee information
     *         and helpers for computing the L1 portion of the transaction fee.
     */
    address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;

    /**
     * @custom:legacy
     * @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
     *         or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
     */
    address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;

    /**
     * @custom:legacy
     * @notice Address of the DeployerWhitelist predeploy. No longer active.
     */
    address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;

    /**
     * @custom:legacy
     * @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
     *         state trie as of the Bedrock upgrade. Contract has been locked and write functions
     *         can no longer be accessed.
     */
    address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;

    /**
     * @custom:legacy
     * @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
     *         instead, which exposes more information about the L1 state.
     */
    address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;

    /**
     * @custom:legacy
     * @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
     *         L2ToL1MessagePasser contract instead.
     */
    address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;

    /**
     * @notice Address of the ProxyAdmin predeploy.
     */
    address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;

    /**
     * @notice Address of the BaseFeeVault predeploy.
     */
    address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;

    /**
     * @notice Address of the L1FeeVault predeploy.
     */
    address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;

    /**
     * @notice Address of the GovernanceToken predeploy.
     */
    address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042;
}

File 9 of 33 : L2CrossDomainMessenger.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

import { AddressAliasHelper } from "../vendor/AddressAliasHelper.sol";
import { Predeploys } from "../libraries/Predeploys.sol";
import { CrossDomainMessenger } from "../universal/CrossDomainMessenger.sol";
import { Semver } from "../universal/Semver.sol";
import { L2ToL1MessagePasser } from "./L2ToL1MessagePasser.sol";

/**
 * @custom:proxied
 * @custom:predeploy 0x4200000000000000000000000000000000000007
 * @title L2CrossDomainMessenger
 * @notice The L2CrossDomainMessenger is a high-level interface for message passing between L1 and
 *         L2 on the L2 side. Users are generally encouraged to use this contract instead of lower
 *         level message passing contracts.
 */
contract L2CrossDomainMessenger is CrossDomainMessenger, Semver {
    /**
     * @custom:semver 1.1.0
     *
     * @param _l1CrossDomainMessenger Address of the L1CrossDomainMessenger contract.
     */
    constructor(address _l1CrossDomainMessenger)
        Semver(1, 1, 0)
        CrossDomainMessenger(_l1CrossDomainMessenger)
    {
        initialize();
    }

    /**
     * @notice Initializer.
     */
    function initialize() public initializer {
        __CrossDomainMessenger_init();
    }

    /**
     * @custom:legacy
     * @notice Legacy getter for the remote messenger. Use otherMessenger going forward.
     *
     * @return Address of the L1CrossDomainMessenger contract.
     */
    function l1CrossDomainMessenger() public view returns (address) {
        return OTHER_MESSENGER;
    }

    /**
     * @inheritdoc CrossDomainMessenger
     */
    function _sendMessage(
        address _to,
        uint64 _gasLimit,
        uint256 _value,
        bytes memory _data
    ) internal override {
        L2ToL1MessagePasser(payable(Predeploys.L2_TO_L1_MESSAGE_PASSER)).initiateWithdrawal{
            value: _value
        }(_to, _gasLimit, _data);
    }

    /**
     * @inheritdoc CrossDomainMessenger
     */
    function _isOtherMessenger() internal view override returns (bool) {
        return AddressAliasHelper.undoL1ToL2Alias(msg.sender) == OTHER_MESSENGER;
    }

    /**
     * @inheritdoc CrossDomainMessenger
     */
    function _isUnsafeTarget(address _target) internal view override returns (bool) {
        return _target == address(this) || _target == address(Predeploys.L2_TO_L1_MESSAGE_PASSER);
    }
}

File 10 of 33 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 11 of 33 : ISemaphoreVerifier.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.15;

/// @title Tree Verifier Interface
/// @author Worldcoin
/// @notice An interface representing a merkle tree verifier.
interface ISemaphoreVerifier {
    /// @notice Verify an uncompressed Groth16 proof.
    /// @notice Reverts with InvalidProof if the proof is invalid or
    /// with PublicInputNotInField the public input is not reduced.
    /// @notice There is no return value. If the function does not revert, the
    /// proof was succesfully verified.
    /// @param proof the points (A, B, C) in EIP-197 format matching the output
    /// of compressProof.
    /// @param input the public input field elements in the scalar field Fr.
    /// Elements must be reduced.
    function verifyProof(uint256[8] calldata proof, uint256[4] calldata input) external view;
}

File 12 of 33 : AddressAliasHelper.sol
// SPDX-License-Identifier: Apache-2.0

/*
 * Copyright 2019-2021, Offchain Labs, Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *    http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

pragma solidity ^0.8.0;

library AddressAliasHelper {
    uint160 constant offset = uint160(0x1111000000000000000000000000000000001111);

    /// @notice Utility function that converts the address in the L1 that submitted a tx to
    /// the inbox to the msg.sender viewed in the L2
    /// @param l1Address the address in the L1 that triggered the tx to L2
    /// @return l2Address L2 address as viewed in msg.sender
    function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) {
        unchecked {
            l2Address = address(uint160(l1Address) + offset);
        }
    }

    /// @notice Utility function that converts the msg.sender viewed in the L2 to the
    /// address in the L1 that submitted a tx to the inbox
    /// @param l2Address L2 address as viewed in msg.sender
    /// @return l1Address the address in the L1 that triggered the tx to L2
    function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) {
        unchecked {
            l1Address = address(uint160(l2Address) - offset);
        }
    }
}

File 13 of 33 : CrossDomainMessenger.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { SafeCall } from "../libraries/SafeCall.sol";
import { Hashing } from "../libraries/Hashing.sol";
import { Encoding } from "../libraries/Encoding.sol";
import { Constants } from "../libraries/Constants.sol";

/**
 * @custom:legacy
 * @title CrossDomainMessengerLegacySpacer0
 * @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
 *         libAddressManager variable used to exist. Must be the first contract in the inheritance
 *         tree of the CrossDomainMessenger.
 */
contract CrossDomainMessengerLegacySpacer0 {
    /**
     * @custom:legacy
     * @custom:spacer libAddressManager
     * @notice Spacer for backwards compatibility.
     */
    address private spacer_0_0_20;
}

/**
 * @custom:legacy
 * @title CrossDomainMessengerLegacySpacer1
 * @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
 *         PausableUpgradable and OwnableUpgradeable variables used to exist. Must be
 *         the third contract in the inheritance tree of the CrossDomainMessenger.
 */
contract CrossDomainMessengerLegacySpacer1 {
    /**
     * @custom:legacy
     * @custom:spacer __gap
     * @notice Spacer for backwards compatibility. Comes from OpenZeppelin
     *         ContextUpgradable via OwnableUpgradeable.
     *
     */
    uint256[50] private spacer_1_0_1600;

    /**
     * @custom:legacy
     * @custom:spacer _owner
     * @notice Spacer for backwards compatibility.
     *         Come from OpenZeppelin OwnableUpgradeable.
     */
    address private spacer_51_0_20;

    /**
     * @custom:legacy
     * @custom:spacer __gap
     * @notice Spacer for backwards compatibility. Comes from OpenZeppelin
     *         ContextUpgradable via PausableUpgradable.
     */
    uint256[49] private spacer_52_0_1568;

    /**
     * @custom:legacy
     * @custom:spacer _paused
     * @notice Spacer for backwards compatibility. Comes from OpenZeppelin
     *         PausableUpgradable.
     */
    bool private spacer_101_0_1;

    /**
     * @custom:legacy
     * @custom:spacer __gap
     * @notice Spacer for backwards compatibility. Comes from OpenZeppelin
     *         PausableUpgradable.
     */
    uint256[49] private spacer_102_0_1568;

    /**
     * @custom:legacy
     * @custom:spacer ReentrancyGuardUpgradeable's `_status` field.
     * @notice Spacer for backwards compatibility
     */
    uint256 private spacer_151_0_32;

    /**
     * @custom:spacer ReentrancyGuardUpgradeable
     * @notice Spacer for backwards compatibility
     */
    uint256[49] private __gap_reentrancy_guard;

    /**
     * @custom:legacy
     * @custom:spacer blockedMessages
     * @notice Spacer for backwards compatibility.
     */
    mapping(bytes32 => bool) private spacer_201_0_32;

    /**
     * @custom:legacy
     * @custom:spacer relayedMessages
     * @notice Spacer for backwards compatibility.
     */
    mapping(bytes32 => bool) private spacer_202_0_32;
}

/**
 * @custom:upgradeable
 * @title CrossDomainMessenger
 * @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
 *         cross-chain messenger contracts. It's designed to be a universal interface that only
 *         needs to be extended slightly to provide low-level message passing functionality on each
 *         chain it's deployed on. Currently only designed for message passing between two paired
 *         chains and does not support one-to-many interactions.
 *
 *         Any changes to this contract MUST result in a semver bump for contracts that inherit it.
 */
abstract contract CrossDomainMessenger is
    CrossDomainMessengerLegacySpacer0,
    Initializable,
    CrossDomainMessengerLegacySpacer1
{
    /**
     * @notice Current message version identifier.
     */
    uint16 public constant MESSAGE_VERSION = 1;

    /**
     * @notice Constant overhead added to the base gas for a message.
     */
    uint64 public constant MIN_GAS_CONSTANT_OVERHEAD = 200_000;

    /**
     * @notice Numerator for dynamic overhead added to the base gas for a message.
     */
    uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 1016;

    /**
     * @notice Denominator for dynamic overhead added to the base gas for a message.
     */
    uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 1000;

    /**
     * @notice Extra gas added to base gas for each byte of calldata in a message.
     */
    uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;

    /**
     * @notice Address of the paired CrossDomainMessenger contract on the other chain.
     */
    address public immutable OTHER_MESSENGER;

    /**
     * @notice Mapping of message hashes to boolean receipt values. Note that a message will only
     *         be present in this mapping if it has successfully been relayed on this chain, and
     *         can therefore not be relayed again.
     */
    mapping(bytes32 => bool) public successfulMessages;

    /**
     * @notice Address of the sender of the currently executing message on the other chain. If the
     *         value of this variable is the default value (0x00000000...dead) then no message is
     *         currently being executed. Use the xDomainMessageSender getter which will throw an
     *         error if this is the case.
     */
    address internal xDomainMsgSender;

    /**
     * @notice Nonce for the next message to be sent, without the message version applied. Use the
     *         messageNonce getter which will insert the message version into the nonce to give you
     *         the actual nonce to be used for the message.
     */
    uint240 internal msgNonce;

    /**
     * @notice Mapping of message hashes to a boolean if and only if the message has failed to be
     *         executed at least once. A message will not be present in this mapping if it
     *         successfully executed on the first attempt.
     */
    mapping(bytes32 => bool) public failedMessages;

    /**
     * @notice A mapping of hashes to reentrancy locks.
     */
    mapping(bytes32 => bool) internal reentrancyLocks;

    /**
     * @notice Reserve extra slots in the storage layout for future upgrades.
     *         A gap size of 41 was chosen here, so that the first slot used in a child contract
     *         would be a multiple of 50.
     */
    uint256[41] private __gap;

    /**
     * @notice Emitted whenever a message is sent to the other chain.
     *
     * @param target       Address of the recipient of the message.
     * @param sender       Address of the sender of the message.
     * @param message      Message to trigger the recipient address with.
     * @param messageNonce Unique nonce attached to the message.
     * @param gasLimit     Minimum gas limit that the message can be executed with.
     */
    event SentMessage(
        address indexed target,
        address sender,
        bytes message,
        uint256 messageNonce,
        uint256 gasLimit
    );

    /**
     * @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
     *         SentMessage event without breaking the ABI of this contract, this is good enough.
     *
     * @param sender Address of the sender of the message.
     * @param value  ETH value sent along with the message to the recipient.
     */
    event SentMessageExtension1(address indexed sender, uint256 value);

    /**
     * @notice Emitted whenever a message is successfully relayed on this chain.
     *
     * @param msgHash Hash of the message that was relayed.
     */
    event RelayedMessage(bytes32 indexed msgHash);

    /**
     * @notice Emitted whenever a message fails to be relayed on this chain.
     *
     * @param msgHash Hash of the message that failed to be relayed.
     */
    event FailedRelayedMessage(bytes32 indexed msgHash);

    /**
     * @param _otherMessenger Address of the messenger on the paired chain.
     */
    constructor(address _otherMessenger) {
        OTHER_MESSENGER = _otherMessenger;
    }

    /**
     * @notice Sends a message to some target address on the other chain. Note that if the call
     *         always reverts, then the message will be unrelayable, and any ETH sent will be
     *         permanently locked. The same will occur if the target on the other chain is
     *         considered unsafe (see the _isUnsafeTarget() function).
     *
     * @param _target      Target contract or wallet address.
     * @param _message     Message to trigger the target address with.
     * @param _minGasLimit Minimum gas limit that the message can be executed with.
     */
    function sendMessage(
        address _target,
        bytes calldata _message,
        uint32 _minGasLimit
    ) external payable {
        // Triggers a message to the other messenger. Note that the amount of gas provided to the
        // message is the amount of gas requested by the user PLUS the base gas value. We want to
        // guarantee the property that the call to the target contract will always have at least
        // the minimum gas limit specified by the user.
        _sendMessage(
            OTHER_MESSENGER,
            baseGas(_message, _minGasLimit),
            msg.value,
            abi.encodeWithSelector(
                this.relayMessage.selector,
                messageNonce(),
                msg.sender,
                _target,
                msg.value,
                _minGasLimit,
                _message
            )
        );

        emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
        emit SentMessageExtension1(msg.sender, msg.value);

        unchecked {
            ++msgNonce;
        }
    }

    /**
     * @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
     *         be executed via cross-chain call from the other messenger OR if the message was
     *         already received once and is currently being replayed.
     *
     * @param _nonce       Nonce of the message being relayed.
     * @param _sender      Address of the user who sent the message.
     * @param _target      Address that the message is targeted at.
     * @param _value       ETH value to send with the message.
     * @param _minGasLimit Minimum amount of gas that the message can be executed with.
     * @param _message     Message to send to the target.
     */
    function relayMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _minGasLimit,
        bytes calldata _message
    ) external payable {
        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
        require(
            version < 2,
            "CrossDomainMessenger: only version 0 or 1 messages are supported at this time"
        );

        // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
        // to check that the legacy version of the message has not already been relayed.
        if (version == 0) {
            bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
            require(
                successfulMessages[oldHash] == false,
                "CrossDomainMessenger: legacy withdrawal already relayed"
            );
        }

        // We use the v1 message hash as the unique identifier for the message because it commits
        // to the value and minimum gas limit of the message.
        bytes32 versionedHash = Hashing.hashCrossDomainMessageV1(
            _nonce,
            _sender,
            _target,
            _value,
            _minGasLimit,
            _message
        );

        // Check if the reentrancy lock for the `versionedHash` is already set.
        if (reentrancyLocks[versionedHash]) {
            revert("ReentrancyGuard: reentrant call");
        }
        // Trigger the reentrancy lock for `versionedHash`
        reentrancyLocks[versionedHash] = true;

        if (_isOtherMessenger()) {
            // These properties should always hold when the message is first submitted (as
            // opposed to being replayed).
            assert(msg.value == _value);
            assert(!failedMessages[versionedHash]);
        } else {
            require(
                msg.value == 0,
                "CrossDomainMessenger: value must be zero unless message is from a system address"
            );

            require(
                failedMessages[versionedHash],
                "CrossDomainMessenger: message cannot be replayed"
            );
        }

        require(
            _isUnsafeTarget(_target) == false,
            "CrossDomainMessenger: cannot send message to blocked system address"
        );

        require(
            successfulMessages[versionedHash] == false,
            "CrossDomainMessenger: message has already been relayed"
        );

        xDomainMsgSender = _sender;
        bool success = SafeCall.callWithMinGas(_target, _minGasLimit, _value, _message);
        xDomainMsgSender = Constants.DEFAULT_L2_SENDER;

        if (success) {
            successfulMessages[versionedHash] = true;
            emit RelayedMessage(versionedHash);
        } else {
            failedMessages[versionedHash] = true;
            emit FailedRelayedMessage(versionedHash);

            // Revert in this case if the transaction was triggered by the estimation address. This
            // should only be possible during gas estimation or we have bigger problems. Reverting
            // here will make the behavior of gas estimation change such that the gas limit
            // computed will be the amount required to relay the message, even if that amount is
            // greater than the minimum gas limit specified by the user.
            if (tx.origin == Constants.ESTIMATION_ADDRESS) {
                revert("CrossDomainMessenger: failed to relay message");
            }
        }

        // Clear the reentrancy lock for `versionedHash`
        reentrancyLocks[versionedHash] = false;
    }

    /**
     * @notice Retrieves the address of the contract or wallet that initiated the currently
     *         executing message on the other chain. Will throw an error if there is no message
     *         currently being executed. Allows the recipient of a call to see who triggered it.
     *
     * @return Address of the sender of the currently executing message on the other chain.
     */
    function xDomainMessageSender() external view returns (address) {
        require(
            xDomainMsgSender != Constants.DEFAULT_L2_SENDER,
            "CrossDomainMessenger: xDomainMessageSender is not set"
        );

        return xDomainMsgSender;
    }

    /**
     * @notice Retrieves the next message nonce. Message version will be added to the upper two
     *         bytes of the message nonce. Message version allows us to treat messages as having
     *         different structures.
     *
     * @return Nonce of the next message to be sent, with added message version.
     */
    function messageNonce() public view returns (uint256) {
        return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
    }

    /**
     * @notice Computes the amount of gas required to guarantee that a given message will be
     *         received on the other chain without running out of gas. Guaranteeing that a message
     *         will not run out of gas is important because this ensures that a message can always
     *         be replayed on the other chain if it fails to execute completely.
     *
     * @param _message     Message to compute the amount of required gas for.
     * @param _minGasLimit Minimum desired gas limit when message goes to target.
     *
     * @return Amount of gas required to guarantee message receipt.
     */
    function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
        // We peform the following math on uint64s to avoid overflow errors. Multiplying the
        // by MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR would otherwise limit the _minGasLimit to
        // type(uint32).max / MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR ~= 4.2m.
        return
            // Dynamic overhead
            ((uint64(_minGasLimit) * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) /
                MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR) +
            // Calldata overhead
            (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD) +
            // Constant overhead
            MIN_GAS_CONSTANT_OVERHEAD;
    }

    /**
     * @notice Intializer.
     */
    // solhint-disable-next-line func-name-mixedcase
    function __CrossDomainMessenger_init() internal onlyInitializing {
        xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
    }

    /**
     * @notice Sends a low-level message to the other messenger. Needs to be implemented by child
     *         contracts because the logic for this depends on the network where the messenger is
     *         being deployed.
     *
     * @param _to       Recipient of the message on the other chain.
     * @param _gasLimit Minimum gas limit the message can be executed with.
     * @param _value    Amount of ETH to send with the message.
     * @param _data     Message data.
     */
    function _sendMessage(
        address _to,
        uint64 _gasLimit,
        uint256 _value,
        bytes memory _data
    ) internal virtual;

    /**
     * @notice Checks whether the message is coming from the other messenger. Implemented by child
     *         contracts because the logic for this depends on the network where the messenger is
     *         being deployed.
     *
     * @return Whether the message is coming from the other messenger.
     */
    function _isOtherMessenger() internal view virtual returns (bool);

    /**
     * @notice Checks whether a given call target is a system address that could cause the
     *         messenger to peform an unsafe action. This is NOT a mechanism for blocking user
     *         addresses. This is ONLY used to prevent the execution of messages to specific
     *         system addresses that could cause security issues, e.g., having the
     *         CrossDomainMessenger send messages to itself.
     *
     * @param _target Address of the contract to check.
     *
     * @return Whether or not the address is an unsafe system address.
     */
    function _isUnsafeTarget(address _target) internal view virtual returns (bool);
}

File 14 of 33 : Semver.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";

/**
 * @title Semver
 * @notice Semver is a simple contract for managing contract versions.
 */
contract Semver {
    /**
     * @notice Contract version number (major).
     */
    uint256 private immutable MAJOR_VERSION;

    /**
     * @notice Contract version number (minor).
     */
    uint256 private immutable MINOR_VERSION;

    /**
     * @notice Contract version number (patch).
     */
    uint256 private immutable PATCH_VERSION;

    /**
     * @param _major Version number (major).
     * @param _minor Version number (minor).
     * @param _patch Version number (patch).
     */
    constructor(
        uint256 _major,
        uint256 _minor,
        uint256 _patch
    ) {
        MAJOR_VERSION = _major;
        MINOR_VERSION = _minor;
        PATCH_VERSION = _patch;
    }

    /**
     * @notice Returns the full semver contract version.
     *
     * @return Semver contract version as a string.
     */
    function version() public view returns (string memory) {
        return
            string(
                abi.encodePacked(
                    Strings.toString(MAJOR_VERSION),
                    ".",
                    Strings.toString(MINOR_VERSION),
                    ".",
                    Strings.toString(PATCH_VERSION)
                )
            );
    }
}

File 15 of 33 : L2ToL1MessagePasser.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

import { Types } from "../libraries/Types.sol";
import { Hashing } from "../libraries/Hashing.sol";
import { Encoding } from "../libraries/Encoding.sol";
import { Burn } from "../libraries/Burn.sol";
import { Semver } from "../universal/Semver.sol";

/**
 * @custom:proxied
 * @custom:predeploy 0x4200000000000000000000000000000000000016
 * @title L2ToL1MessagePasser
 * @notice The L2ToL1MessagePasser is a dedicated contract where messages that are being sent from
 *         L2 to L1 can be stored. The storage root of this contract is pulled up to the top level
 *         of the L2 output to reduce the cost of proving the existence of sent messages.
 */
contract L2ToL1MessagePasser is Semver {
    /**
     * @notice The L1 gas limit set when eth is withdrawn using the receive() function.
     */
    uint256 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;

    /**
     * @notice Current message version identifier.
     */
    uint16 public constant MESSAGE_VERSION = 1;

    /**
     * @notice Includes the message hashes for all withdrawals
     */
    mapping(bytes32 => bool) public sentMessages;

    /**
     * @notice A unique value hashed with each withdrawal.
     */
    uint240 internal msgNonce;

    /**
     * @notice Emitted any time a withdrawal is initiated.
     *
     * @param nonce          Unique value corresponding to each withdrawal.
     * @param sender         The L2 account address which initiated the withdrawal.
     * @param target         The L1 account address the call will be send to.
     * @param value          The ETH value submitted for withdrawal, to be forwarded to the target.
     * @param gasLimit       The minimum amount of gas that must be provided when withdrawing.
     * @param data           The data to be forwarded to the target on L1.
     * @param withdrawalHash The hash of the withdrawal.
     */
    event MessagePassed(
        uint256 indexed nonce,
        address indexed sender,
        address indexed target,
        uint256 value,
        uint256 gasLimit,
        bytes data,
        bytes32 withdrawalHash
    );

    /**
     * @notice Emitted when the balance of this contract is burned.
     *
     * @param amount Amount of ETh that was burned.
     */
    event WithdrawerBalanceBurnt(uint256 indexed amount);

    /**
     * @custom:semver 1.0.0
     */
    constructor() Semver(1, 0, 0) {}

    /**
     * @notice Allows users to withdraw ETH by sending directly to this contract.
     */
    receive() external payable {
        initiateWithdrawal(msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes(""));
    }

    /**
     * @notice Removes all ETH held by this contract from the state. Used to prevent the amount of
     *         ETH on L2 inflating when ETH is withdrawn. Currently only way to do this is to
     *         create a contract and self-destruct it to itself. Anyone can call this function. Not
     *         incentivized since this function is very cheap.
     */
    function burn() external {
        uint256 balance = address(this).balance;
        Burn.eth(balance);
        emit WithdrawerBalanceBurnt(balance);
    }

    /**
     * @notice Sends a message from L2 to L1.
     *
     * @param _target   Address to call on L1 execution.
     * @param _gasLimit Minimum gas limit for executing the message on L1.
     * @param _data     Data to forward to L1 target.
     */
    function initiateWithdrawal(
        address _target,
        uint256 _gasLimit,
        bytes memory _data
    ) public payable {
        bytes32 withdrawalHash = Hashing.hashWithdrawal(
            Types.WithdrawalTransaction({
                nonce: messageNonce(),
                sender: msg.sender,
                target: _target,
                value: msg.value,
                gasLimit: _gasLimit,
                data: _data
            })
        );

        sentMessages[withdrawalHash] = true;

        emit MessagePassed(
            messageNonce(),
            msg.sender,
            _target,
            msg.value,
            _gasLimit,
            _data,
            withdrawalHash
        );

        unchecked {
            ++msgNonce;
        }
    }

    /**
     * @notice Retrieves the next message nonce. Message version will be added to the upper two
     *         bytes of the message nonce. Message version allows us to treat messages as having
     *         different structures.
     *
     * @return Nonce of the next message to be sent, with added message version.
     */
    function messageNonce() public view returns (uint256) {
        return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
    }
}

File 16 of 33 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 17 of 33 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized < type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

File 18 of 33 : SafeCall.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

/**
 * @title SafeCall
 * @notice Perform low level safe calls
 */
library SafeCall {
    /**
     * @notice Perform a low level call without copying any returndata
     *
     * @param _target   Address to call
     * @param _gas      Amount of gas to pass to the call
     * @param _value    Amount of value to pass to the call
     * @param _calldata Calldata to pass to the call
     */
    function call(
        address _target,
        uint256 _gas,
        uint256 _value,
        bytes memory _calldata
    ) internal returns (bool) {
        bool _success;
        assembly {
            _success := call(
                _gas, // gas
                _target, // recipient
                _value, // ether value
                add(_calldata, 32), // inloc
                mload(_calldata), // inlen
                0, // outloc
                0 // outlen
            )
        }
        return _success;
    }

    /**
     * @notice Perform a low level call without copying any returndata. This function
     *         will revert if the call cannot be performed with the specified minimum
     *         gas.
     *
     * @param _target   Address to call
     * @param _minGas   The minimum amount of gas that may be passed to the call
     * @param _value    Amount of value to pass to the call
     * @param _calldata Calldata to pass to the call
     */
    function callWithMinGas(
        address _target,
        uint256 _minGas,
        uint256 _value,
        bytes memory _calldata
    ) internal returns (bool) {
        bool _success;
        assembly {
            // Assertion: gasleft() >= ((_minGas + 200) * 64) / 63
            //
            // Because EIP-150 ensures that, a maximum of 63/64ths of the remaining gas in the call
            // frame may be passed to a subcontext, we need to ensure that the gas will not be
            // truncated to hold this function's invariant: "If a call is performed by
            // `callWithMinGas`, it must receive at least the specified minimum gas limit." In
            // addition, exactly 51 gas is consumed between the below `GAS` opcode and the `CALL`
            // opcode, so it is factored in with some extra room for error.
            if lt(gas(), div(mul(64, add(_minGas, 200)), 63)) {
                // Store the "Error(string)" selector in scratch space.
                mstore(0, 0x08c379a0)
                // Store the pointer to the string length in scratch space.
                mstore(32, 32)
                // Store the string.
                //
                // SAFETY:
                // - We pad the beginning of the string with two zero bytes as well as the
                // length (24) to ensure that we override the free memory pointer at offset
                // 0x40. This is necessary because the free memory pointer is likely to
                // be greater than 1 byte when this function is called, but it is incredibly
                // unlikely that it will be greater than 3 bytes. As for the data within
                // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset.
                // - It's fine to clobber the free memory pointer, we're reverting.
                mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173)

                // Revert with 'Error("SafeCall: Not enough gas")'
                revert(28, 100)
            }

            // The call will be supplied at least (((_minGas + 200) * 64) / 63) - 49 gas due to the
            // above assertion. This ensures that, in all circumstances, the call will
            // receive at least the minimum amount of gas specified.
            // We can prove this property by solving the inequalities:
            // ((((_minGas + 200) * 64) / 63) - 49) >= _minGas
            // ((((_minGas + 200) * 64) / 63) - 51) * (63 / 64) >= _minGas
            // Both inequalities hold true for all possible values of `_minGas`.
            _success := call(
                gas(), // gas
                _target, // recipient
                _value, // ether value
                add(_calldata, 32), // inloc
                mload(_calldata), // inlen
                0x00, // outloc
                0x00 // outlen
            )
        }
        return _success;
    }
}

File 19 of 33 : Hashing.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { Types } from "./Types.sol";
import { Encoding } from "./Encoding.sol";

/**
 * @title Hashing
 * @notice Hashing handles Optimism's various different hashing schemes.
 */
library Hashing {
    /**
     * @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
     *         given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
     *         system.
     *
     * @param _tx User deposit transaction to hash.
     *
     * @return Hash of the RLP encoded L2 deposit transaction.
     */
    function hashDepositTransaction(Types.UserDepositTransaction memory _tx)
        internal
        pure
        returns (bytes32)
    {
        return keccak256(Encoding.encodeDepositTransaction(_tx));
    }

    /**
     * @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
     *         of the L2 transaction that corresponds to a deposit is unique and is
     *         deterministically generated from L1 transaction data.
     *
     * @param _l1BlockHash Hash of the L1 block where the deposit was included.
     * @param _logIndex    The index of the log that created the deposit transaction.
     *
     * @return Hash of the deposit transaction's "source hash".
     */
    function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex)
        internal
        pure
        returns (bytes32)
    {
        bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
        return keccak256(abi.encode(bytes32(0), depositId));
    }

    /**
     * @notice Hashes the cross domain message based on the version that is encoded into the
     *         message nonce.
     *
     * @param _nonce    Message nonce with version encoded into the first two bytes.
     * @param _sender   Address of the sender of the message.
     * @param _target   Address of the target of the message.
     * @param _value    ETH value to send to the target.
     * @param _gasLimit Gas limit to use for the message.
     * @param _data     Data to send with the message.
     *
     * @return Hashed cross domain message.
     */
    function hashCrossDomainMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    ) internal pure returns (bytes32) {
        (, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
        if (version == 0) {
            return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
        } else if (version == 1) {
            return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
        } else {
            revert("Hashing: unknown cross domain message version");
        }
    }

    /**
     * @notice Hashes a cross domain message based on the V0 (legacy) encoding.
     *
     * @param _target Address of the target of the message.
     * @param _sender Address of the sender of the message.
     * @param _data   Data to send with the message.
     * @param _nonce  Message nonce.
     *
     * @return Hashed cross domain message.
     */
    function hashCrossDomainMessageV0(
        address _target,
        address _sender,
        bytes memory _data,
        uint256 _nonce
    ) internal pure returns (bytes32) {
        return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
    }

    /**
     * @notice Hashes a cross domain message based on the V1 (current) encoding.
     *
     * @param _nonce    Message nonce.
     * @param _sender   Address of the sender of the message.
     * @param _target   Address of the target of the message.
     * @param _value    ETH value to send to the target.
     * @param _gasLimit Gas limit to use for the message.
     * @param _data     Data to send with the message.
     *
     * @return Hashed cross domain message.
     */
    function hashCrossDomainMessageV1(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    ) internal pure returns (bytes32) {
        return
            keccak256(
                Encoding.encodeCrossDomainMessageV1(
                    _nonce,
                    _sender,
                    _target,
                    _value,
                    _gasLimit,
                    _data
                )
            );
    }

    /**
     * @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
     *
     * @param _tx Withdrawal transaction to hash.
     *
     * @return Hashed withdrawal transaction.
     */
    function hashWithdrawal(Types.WithdrawalTransaction memory _tx)
        internal
        pure
        returns (bytes32)
    {
        return
            keccak256(
                abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data)
            );
    }

    /**
     * @notice Hashes the various elements of an output root proof into an output root hash which
     *         can be used to check if the proof is valid.
     *
     * @param _outputRootProof Output root proof which should hash to an output root.
     *
     * @return Hashed output root proof.
     */
    function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof)
        internal
        pure
        returns (bytes32)
    {
        return
            keccak256(
                abi.encode(
                    _outputRootProof.version,
                    _outputRootProof.stateRoot,
                    _outputRootProof.messagePasserStorageRoot,
                    _outputRootProof.latestBlockhash
                )
            );
    }
}

File 20 of 33 : Encoding.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { Types } from "./Types.sol";
import { Hashing } from "./Hashing.sol";
import { RLPWriter } from "./rlp/RLPWriter.sol";

/**
 * @title Encoding
 * @notice Encoding handles Optimism's various different encoding schemes.
 */
library Encoding {
    /**
     * @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
     *         to the L2 system. Useful for searching for a deposit in the L2 system. The
     *         transaction is prefixed with 0x7e to identify its EIP-2718 type.
     *
     * @param _tx User deposit transaction to encode.
     *
     * @return RLP encoded L2 deposit transaction.
     */
    function encodeDepositTransaction(Types.UserDepositTransaction memory _tx)
        internal
        pure
        returns (bytes memory)
    {
        bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
        bytes[] memory raw = new bytes[](8);
        raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
        raw[1] = RLPWriter.writeAddress(_tx.from);
        raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
        raw[3] = RLPWriter.writeUint(_tx.mint);
        raw[4] = RLPWriter.writeUint(_tx.value);
        raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
        raw[6] = RLPWriter.writeBool(false);
        raw[7] = RLPWriter.writeBytes(_tx.data);
        return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
    }

    /**
     * @notice Encodes the cross domain message based on the version that is encoded into the
     *         message nonce.
     *
     * @param _nonce    Message nonce with version encoded into the first two bytes.
     * @param _sender   Address of the sender of the message.
     * @param _target   Address of the target of the message.
     * @param _value    ETH value to send to the target.
     * @param _gasLimit Gas limit to use for the message.
     * @param _data     Data to send with the message.
     *
     * @return Encoded cross domain message.
     */
    function encodeCrossDomainMessage(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    ) internal pure returns (bytes memory) {
        (, uint16 version) = decodeVersionedNonce(_nonce);
        if (version == 0) {
            return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
        } else if (version == 1) {
            return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
        } else {
            revert("Encoding: unknown cross domain message version");
        }
    }

    /**
     * @notice Encodes a cross domain message based on the V0 (legacy) encoding.
     *
     * @param _target Address of the target of the message.
     * @param _sender Address of the sender of the message.
     * @param _data   Data to send with the message.
     * @param _nonce  Message nonce.
     *
     * @return Encoded cross domain message.
     */
    function encodeCrossDomainMessageV0(
        address _target,
        address _sender,
        bytes memory _data,
        uint256 _nonce
    ) internal pure returns (bytes memory) {
        return
            abi.encodeWithSignature(
                "relayMessage(address,address,bytes,uint256)",
                _target,
                _sender,
                _data,
                _nonce
            );
    }

    /**
     * @notice Encodes a cross domain message based on the V1 (current) encoding.
     *
     * @param _nonce    Message nonce.
     * @param _sender   Address of the sender of the message.
     * @param _target   Address of the target of the message.
     * @param _value    ETH value to send to the target.
     * @param _gasLimit Gas limit to use for the message.
     * @param _data     Data to send with the message.
     *
     * @return Encoded cross domain message.
     */
    function encodeCrossDomainMessageV1(
        uint256 _nonce,
        address _sender,
        address _target,
        uint256 _value,
        uint256 _gasLimit,
        bytes memory _data
    ) internal pure returns (bytes memory) {
        return
            abi.encodeWithSignature(
                "relayMessage(uint256,address,address,uint256,uint256,bytes)",
                _nonce,
                _sender,
                _target,
                _value,
                _gasLimit,
                _data
            );
    }

    /**
     * @notice Adds a version number into the first two bytes of a message nonce.
     *
     * @param _nonce   Message nonce to encode into.
     * @param _version Version number to encode into the message nonce.
     *
     * @return Message nonce with version encoded into the first two bytes.
     */
    function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
        uint256 nonce;
        assembly {
            nonce := or(shl(240, _version), _nonce)
        }
        return nonce;
    }

    /**
     * @notice Pulls the version out of a version-encoded nonce.
     *
     * @param _nonce Message nonce with version encoded into the first two bytes.
     *
     * @return Nonce without encoded version.
     * @return Version of the message.
     */
    function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
        uint240 nonce;
        uint16 version;
        assembly {
            nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
            version := shr(240, _nonce)
        }
        return (nonce, version);
    }
}

File 21 of 33 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import { ResourceMetering } from "../L1/ResourceMetering.sol";

/**
 * @title Constants
 * @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
 *         the stuff used in multiple contracts. Constants that only apply to a single contract
 *         should be defined in that contract instead.
 */
library Constants {
    /**
     * @notice Special address to be used as the tx origin for gas estimation calls in the
     *         OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
     *         the minimum gas limit specified by the user is not actually enough to execute the
     *         given message and you're attempting to estimate the actual necessary gas limit. We
     *         use address(1) because it's the ecrecover precompile and therefore guaranteed to
     *         never have any code on any EVM chain.
     */
    address internal constant ESTIMATION_ADDRESS = address(1);

    /**
     * @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
     *         CrossDomainMessenger contracts before an actual sender is set. This value is
     *         non-zero to reduce the gas cost of message passing transactions.
     */
    address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;

    /**
     * @notice Returns the default values for the ResourceConfig. These are the recommended values
     *         for a production network.
     */
    function DEFAULT_RESOURCE_CONFIG()
        internal
        pure
        returns (ResourceMetering.ResourceConfig memory)
    {
        ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({
            maxResourceLimit: 20_000_000,
            elasticityMultiplier: 10,
            baseFeeMaxChangeDenominator: 8,
            minimumBaseFee: 1 gwei,
            systemTxMaxGas: 1_000_000,
            maximumBaseFee: type(uint128).max
        });
        return config;
    }
}

File 22 of 33 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

File 23 of 33 : Types.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
 * @title Types
 * @notice Contains various types used throughout the Optimism contract system.
 */
library Types {
    /**
     * @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
     *         timestamp that the output root is posted. This timestamp is used to verify that the
     *         finalization period has passed since the output root was submitted.
     *
     * @custom:field outputRoot    Hash of the L2 output.
     * @custom:field timestamp     Timestamp of the L1 block that the output root was submitted in.
     * @custom:field l2BlockNumber L2 block number that the output corresponds to.
     */
    struct OutputProposal {
        bytes32 outputRoot;
        uint128 timestamp;
        uint128 l2BlockNumber;
    }

    /**
     * @notice Struct representing the elements that are hashed together to generate an output root
     *         which itself represents a snapshot of the L2 state.
     *
     * @custom:field version                  Version of the output root.
     * @custom:field stateRoot                Root of the state trie at the block of this output.
     * @custom:field messagePasserStorageRoot Root of the message passer storage trie.
     * @custom:field latestBlockhash          Hash of the block this output was generated from.
     */
    struct OutputRootProof {
        bytes32 version;
        bytes32 stateRoot;
        bytes32 messagePasserStorageRoot;
        bytes32 latestBlockhash;
    }

    /**
     * @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
     *         user (as opposed to a system deposit transaction generated by the system).
     *
     * @custom:field from        Address of the sender of the transaction.
     * @custom:field to          Address of the recipient of the transaction.
     * @custom:field isCreation  True if the transaction is a contract creation.
     * @custom:field value       Value to send to the recipient.
     * @custom:field mint        Amount of ETH to mint.
     * @custom:field gasLimit    Gas limit of the transaction.
     * @custom:field data        Data of the transaction.
     * @custom:field l1BlockHash Hash of the block the transaction was submitted in.
     * @custom:field logIndex    Index of the log in the block the transaction was submitted in.
     */
    struct UserDepositTransaction {
        address from;
        address to;
        bool isCreation;
        uint256 value;
        uint256 mint;
        uint64 gasLimit;
        bytes data;
        bytes32 l1BlockHash;
        uint256 logIndex;
    }

    /**
     * @notice Struct representing a withdrawal transaction.
     *
     * @custom:field nonce    Nonce of the withdrawal transaction
     * @custom:field sender   Address of the sender of the transaction.
     * @custom:field target   Address of the recipient of the transaction.
     * @custom:field value    Value to send to the recipient.
     * @custom:field gasLimit Gas limit of the transaction.
     * @custom:field data     Data of the transaction.
     */
    struct WithdrawalTransaction {
        uint256 nonce;
        address sender;
        address target;
        uint256 value;
        uint256 gasLimit;
        bytes data;
    }
}

File 24 of 33 : Burn.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

/**
 * @title Burn
 * @notice Utilities for burning stuff.
 */
library Burn {
    /**
     * Burns a given amount of ETH.
     *
     * @param _amount Amount of ETH to burn.
     */
    function eth(uint256 _amount) internal {
        new Burner{ value: _amount }();
    }

    /**
     * Burns a given amount of gas.
     *
     * @param _amount Amount of gas to burn.
     */
    function gas(uint256 _amount) internal view {
        uint256 i = 0;
        uint256 initialGas = gasleft();
        while (initialGas - gasleft() < _amount) {
            ++i;
        }
    }
}

/**
 * @title Burner
 * @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
 *         the contract from the circulating supply. Self-destructing is the only way to remove ETH
 *         from the circulating supply.
 */
contract Burner {
    constructor() payable {
        selfdestruct(payable(address(this)));
    }
}

File 25 of 33 : AddressUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 26 of 33 : RLPWriter.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/**
 * @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
 * @title RLPWriter
 * @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
 *         RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
 *         modifications to improve legibility.
 */
library RLPWriter {
    /**
     * @notice RLP encodes a byte string.
     *
     * @param _in The byte string to encode.
     *
     * @return The RLP encoded string in bytes.
     */
    function writeBytes(bytes memory _in) internal pure returns (bytes memory) {
        bytes memory encoded;

        if (_in.length == 1 && uint8(_in[0]) < 128) {
            encoded = _in;
        } else {
            encoded = abi.encodePacked(_writeLength(_in.length, 128), _in);
        }

        return encoded;
    }

    /**
     * @notice RLP encodes a list of RLP encoded byte byte strings.
     *
     * @param _in The list of RLP encoded byte strings.
     *
     * @return The RLP encoded list of items in bytes.
     */
    function writeList(bytes[] memory _in) internal pure returns (bytes memory) {
        bytes memory list = _flatten(_in);
        return abi.encodePacked(_writeLength(list.length, 192), list);
    }

    /**
     * @notice RLP encodes a string.
     *
     * @param _in The string to encode.
     *
     * @return The RLP encoded string in bytes.
     */
    function writeString(string memory _in) internal pure returns (bytes memory) {
        return writeBytes(bytes(_in));
    }

    /**
     * @notice RLP encodes an address.
     *
     * @param _in The address to encode.
     *
     * @return The RLP encoded address in bytes.
     */
    function writeAddress(address _in) internal pure returns (bytes memory) {
        return writeBytes(abi.encodePacked(_in));
    }

    /**
     * @notice RLP encodes a uint.
     *
     * @param _in The uint256 to encode.
     *
     * @return The RLP encoded uint256 in bytes.
     */
    function writeUint(uint256 _in) internal pure returns (bytes memory) {
        return writeBytes(_toBinary(_in));
    }

    /**
     * @notice RLP encodes a bool.
     *
     * @param _in The bool to encode.
     *
     * @return The RLP encoded bool in bytes.
     */
    function writeBool(bool _in) internal pure returns (bytes memory) {
        bytes memory encoded = new bytes(1);
        encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80));
        return encoded;
    }

    /**
     * @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
     *
     * @param _len    The length of the string or the payload.
     * @param _offset 128 if item is string, 192 if item is list.
     *
     * @return RLP encoded bytes.
     */
    function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) {
        bytes memory encoded;

        if (_len < 56) {
            encoded = new bytes(1);
            encoded[0] = bytes1(uint8(_len) + uint8(_offset));
        } else {
            uint256 lenLen;
            uint256 i = 1;
            while (_len / i != 0) {
                lenLen++;
                i *= 256;
            }

            encoded = new bytes(lenLen + 1);
            encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
            for (i = 1; i <= lenLen; i++) {
                encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256));
            }
        }

        return encoded;
    }

    /**
     * @notice Encode integer in big endian binary form with no leading zeroes.
     *
     * @param _x The integer to encode.
     *
     * @return RLP encoded bytes.
     */
    function _toBinary(uint256 _x) private pure returns (bytes memory) {
        bytes memory b = abi.encodePacked(_x);

        uint256 i = 0;
        for (; i < 32; i++) {
            if (b[i] != 0) {
                break;
            }
        }

        bytes memory res = new bytes(32 - i);
        for (uint256 j = 0; j < res.length; j++) {
            res[j] = b[i++];
        }

        return res;
    }

    /**
     * @custom:attribution https://github.com/Arachnid/solidity-stringutils
     * @notice Copies a piece of memory to another location.
     *
     * @param _dest Destination location.
     * @param _src  Source location.
     * @param _len  Length of memory to copy.
     */
    function _memcpy(
        uint256 _dest,
        uint256 _src,
        uint256 _len
    ) private pure {
        uint256 dest = _dest;
        uint256 src = _src;
        uint256 len = _len;

        for (; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        uint256 mask;
        unchecked {
            mask = 256**(32 - len) - 1;
        }
        assembly {
            let srcpart := and(mload(src), not(mask))
            let destpart := and(mload(dest), mask)
            mstore(dest, or(destpart, srcpart))
        }
    }

    /**
     * @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
     * @notice Flattens a list of byte strings into one byte string.
     *
     * @param _list List of byte strings to flatten.
     *
     * @return The flattened byte string.
     */
    function _flatten(bytes[] memory _list) private pure returns (bytes memory) {
        if (_list.length == 0) {
            return new bytes(0);
        }

        uint256 len;
        uint256 i = 0;
        for (; i < _list.length; i++) {
            len += _list[i].length;
        }

        bytes memory flattened = new bytes(len);
        uint256 flattenedPtr;
        assembly {
            flattenedPtr := add(flattened, 0x20)
        }

        for (i = 0; i < _list.length; i++) {
            bytes memory item = _list[i];

            uint256 listPtr;
            assembly {
                listPtr := add(item, 0x20)
            }

            _memcpy(flattenedPtr, listPtr, item.length);
            flattenedPtr += _list[i].length;
        }

        return flattened;
    }
}

File 27 of 33 : ResourceMetering.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Burn } from "../libraries/Burn.sol";
import { Arithmetic } from "../libraries/Arithmetic.sol";

/**
 * @custom:upgradeable
 * @title ResourceMetering
 * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
 *         updates automatically based on current demand.
 */
abstract contract ResourceMetering is Initializable {
    /**
     * @notice Represents the various parameters that control the way in which resources are
     *         metered. Corresponds to the EIP-1559 resource metering system.
     *
     * @custom:field prevBaseFee   Base fee from the previous block(s).
     * @custom:field prevBoughtGas Amount of gas bought so far in the current block.
     * @custom:field prevBlockNum  Last block number that the base fee was updated.
     */
    struct ResourceParams {
        uint128 prevBaseFee;
        uint64 prevBoughtGas;
        uint64 prevBlockNum;
    }

    /**
     * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas
     *         market. These values should be set with care as it is possible to set them in
     *         a way that breaks the deposit gas market. The target resource limit is defined as
     *         maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a
     *         single word. There is additional space for additions in the future.
     *
     * @custom:field maxResourceLimit             Represents the maximum amount of deposit gas that
     *                                            can be purchased per block.
     * @custom:field elasticityMultiplier         Determines the target resource limit along with
     *                                            the resource limit.
     * @custom:field baseFeeMaxChangeDenominator  Determines max change on fee per block.
     * @custom:field minimumBaseFee               The min deposit base fee, it is clamped to this
     *                                            value.
     * @custom:field systemTxMaxGas               The amount of gas supplied to the system
     *                                            transaction. This should be set to the same number
     *                                            that the op-node sets as the gas limit for the
     *                                            system transaction.
     * @custom:field maximumBaseFee               The max deposit base fee, it is clamped to this
     *                                            value.
     */
    struct ResourceConfig {
        uint32 maxResourceLimit;
        uint8 elasticityMultiplier;
        uint8 baseFeeMaxChangeDenominator;
        uint32 minimumBaseFee;
        uint32 systemTxMaxGas;
        uint128 maximumBaseFee;
    }

    /**
     * @notice EIP-1559 style gas parameters.
     */
    ResourceParams public params;

    /**
     * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
     */
    uint256[48] private __gap;

    /**
     * @notice Meters access to a function based an amount of a requested resource.
     *
     * @param _amount Amount of the resource requested.
     */
    modifier metered(uint64 _amount) {
        // Record initial gas amount so we can refund for it later.
        uint256 initialGas = gasleft();

        // Run the underlying function.
        _;

        // Run the metering function.
        _metered(_amount, initialGas);
    }

    /**
     * @notice An internal function that holds all of the logic for metering a resource.
     *
     * @param _amount     Amount of the resource requested.
     * @param _initialGas The amount of gas before any modifier execution.
     */
    function _metered(uint64 _amount, uint256 _initialGas) internal {
        // Update block number and base fee if necessary.
        uint256 blockDiff = block.number - params.prevBlockNum;

        ResourceConfig memory config = _resourceConfig();
        int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) /
            int256(uint256(config.elasticityMultiplier));

        if (blockDiff > 0) {
            // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
            // at which deposits can be created and therefore limit the potential for deposits to
            // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
            int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit;
            int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) /
                (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator)));

            // Update base fee by adding the base fee delta and clamp the resulting value between
            // min and max.
            int256 newBaseFee = Arithmetic.clamp({
                _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta,
                _min: int256(uint256(config.minimumBaseFee)),
                _max: int256(uint256(config.maximumBaseFee))
            });

            // If we skipped more than one block, we also need to account for every empty block.
            // Empty block means there was no demand for deposits in that block, so we should
            // reflect this lack of demand in the fee.
            if (blockDiff > 1) {
                // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
                // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
                // between min and max.
                newBaseFee = Arithmetic.clamp({
                    _value: Arithmetic.cdexp({
                        _coefficient: newBaseFee,
                        _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)),
                        _exponent: int256(blockDiff - 1)
                    }),
                    _min: int256(uint256(config.minimumBaseFee)),
                    _max: int256(uint256(config.maximumBaseFee))
                });
            }

            // Update new base fee, reset bought gas, and update block number.
            params.prevBaseFee = uint128(uint256(newBaseFee));
            params.prevBoughtGas = 0;
            params.prevBlockNum = uint64(block.number);
        }

        // Make sure we can actually buy the resource amount requested by the user.
        params.prevBoughtGas += _amount;
        require(
            int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)),
            "ResourceMetering: cannot buy more gas than available gas limit"
        );

        // Determine the amount of ETH to be paid.
        uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee);

        // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
        // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
        // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
        // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
        // during any 1 day period in the last 5 years, so should be fine.
        uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei);

        // Give the user a refund based on the amount of gas they used to do all of the work up to
        // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
        // effectively like a dynamic stipend (with a minimum value).
        uint256 usedGas = _initialGas - gasleft();
        if (gasCost > usedGas) {
            Burn.gas(gasCost - usedGas);
        }
    }

    /**
     * @notice Virtual function that returns the resource config. Contracts that inherit this
     *         contract must implement this function.
     *
     * @return ResourceConfig
     */
    function _resourceConfig() internal virtual returns (ResourceConfig memory);

    /**
     * @notice Sets initial resource parameter values. This function must either be called by the
     *         initializer function of an upgradeable child contract.
     */
    // solhint-disable-next-line func-name-mixedcase
    function __ResourceMetering_init() internal onlyInitializing {
        params = ResourceParams({
            prevBaseFee: 1 gwei,
            prevBoughtGas: 0,
            prevBlockNum: uint64(block.number)
        });
    }
}

File 28 of 33 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

File 29 of 33 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/Address.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized < type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Internal function that returns the initialized version. Returns `_initialized`
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Internal function that returns the initialized version. Returns `_initializing`
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

File 30 of 33 : Arithmetic.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;

import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";

/**
 * @title Arithmetic
 * @notice Even more math than before.
 */
library Arithmetic {
    /**
     * @notice Clamps a value between a minimum and maximum.
     *
     * @param _value The value to clamp.
     * @param _min   The minimum value.
     * @param _max   The maximum value.
     *
     * @return The clamped value.
     */
    function clamp(
        int256 _value,
        int256 _min,
        int256 _max
    ) internal pure returns (int256) {
        return SignedMath.min(SignedMath.max(_value, _min), _max);
    }

    /**
     * @notice (c)oefficient (d)enominator (exp)onentiation function.
     *         Returns the result of: c * (1 - 1/d)^exp.
     *
     * @param _coefficient Coefficient of the function.
     * @param _denominator Fractional denominator.
     * @param _exponent    Power function exponent.
     *
     * @return Result of c * (1 - 1/d)^exp.
     */
    function cdexp(
        int256 _coefficient,
        int256 _denominator,
        int256 _exponent
    ) internal pure returns (int256) {
        return
            (_coefficient *
                (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
    }
}

File 31 of 33 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 32 of 33 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 33 of 33 : FixedPointMathLib.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    function powWad(int256 x, int256 y) internal pure returns (int256) {
        // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)
        return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0.
    }

    function expWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            // When the result is < 0.5 we return zero. This happens when
            // x <= floor(log(0.5e18) * 1e18) ~ -42e18
            if (x <= -42139678854452767551) return 0;

            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
            if (x >= 135305999368893231589) revert("EXP_OVERFLOW");

            // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
            // for more intermediate precision and a binary basis. This base conversion
            // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
            x = (x << 78) / 5**18;

            // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
            // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
            // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
            int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96;
            x = x - k * 54916777467707473351141471128;

            // k is in the range [-61, 195].

            // Evaluate using a (6, 7)-term rational approximation.
            // p is made monic, we'll multiply by a scale factor later.
            int256 y = x + 1346386616545796478920950773328;
            y = ((y * x) >> 96) + 57155421227552351082224309758442;
            int256 p = y + x - 94201549194550492254356042504812;
            p = ((p * y) >> 96) + 28719021644029726153956944680412240;
            p = p * x + (4385272521454847904659076985693276 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            int256 q = x - 2855989394907223263936484059900;
            q = ((q * x) >> 96) + 50020603652535783019961831881945;
            q = ((q * x) >> 96) - 533845033583426703283633433725380;
            q = ((q * x) >> 96) + 3604857256930695427073651918091429;
            q = ((q * x) >> 96) - 14423608567350463180887372962807573;
            q = ((q * x) >> 96) + 26449188498355588339934803723976023;

            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial won't have zeros in the domain as all its roots are complex.
                // No scaling is necessary because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r should be in the range (0.09, 0.25) * 2**96.

            // We now need to multiply r by:
            // * the scale factor s = ~6.031367120.
            // * the 2**k factor from the range reduction.
            // * the 1e18 / 2**96 factor for base conversion.
            // We do this all at once, with an intermediate result in 2**213
            // basis, so the final right shift is always by a positive amount.
            r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
        }
    }

    function lnWad(int256 x) internal pure returns (int256 r) {
        unchecked {
            require(x > 0, "UNDEFINED");

            // We want to convert x from 10**18 fixed point to 2**96 fixed point.
            // We do this by multiplying by 2**96 / 10**18. But since
            // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
            // and add ln(2**96 / 10**18) at the end.

            // Reduce range of x to (1, 2) * 2**96
            // ln(2^k * x) = k * ln(2) + ln(x)
            int256 k = int256(log2(uint256(x))) - 96;
            x <<= uint256(159 - k);
            x = int256(uint256(x) >> 159);

            // Evaluate using a (8, 8)-term rational approximation.
            // p is made monic, we will multiply by a scale factor later.
            int256 p = x + 3273285459638523848632254066296;
            p = ((p * x) >> 96) + 24828157081833163892658089445524;
            p = ((p * x) >> 96) + 43456485725739037958740375743393;
            p = ((p * x) >> 96) - 11111509109440967052023855526967;
            p = ((p * x) >> 96) - 45023709667254063763336534515857;
            p = ((p * x) >> 96) - 14706773417378608786704636184526;
            p = p * x - (795164235651350426258249787498 << 96);

            // We leave p in 2**192 basis so we don't need to scale it back up for the division.
            // q is monic by convention.
            int256 q = x + 5573035233440673466300451813936;
            q = ((q * x) >> 96) + 71694874799317883764090561454958;
            q = ((q * x) >> 96) + 283447036172924575727196451306956;
            q = ((q * x) >> 96) + 401686690394027663651624208769553;
            q = ((q * x) >> 96) + 204048457590392012362485061816622;
            q = ((q * x) >> 96) + 31853899698501571402653359427138;
            q = ((q * x) >> 96) + 909429971244387300277376558375;
            assembly {
                // Div in assembly because solidity adds a zero check despite the unchecked.
                // The q polynomial is known not to have zeros in the domain.
                // No scaling required because p is already 2**96 too large.
                r := sdiv(p, q)
            }

            // r is in the range (0, 0.125) * 2**96

            // Finalization, we need to:
            // * multiply by the scale factor s = 5.549…
            // * add ln(2**96 / 10**18)
            // * add k * ln(2)
            // * multiply by 10**18 / 2**96 = 5**18 >> 78

            // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
            r *= 1677202110996718588342820967067443963516166;
            // add ln(2) * k * 5e18 * 2**192
            r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k;
            // add ln(2**96 / 10**18) * 5e18 * 2**192
            r += 600920179829731861736702779321621459595472258049074101567377883020018308;
            // base conversion: mul 2**18 / 2**192
            r >>= 174;
        }
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // Divide z by the denominator.
            z := div(z, denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y))
            if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) {
                revert(0, 0)
            }

            // First, divide z - 1 by the denominator and add 1.
            // We allow z - 1 to underflow if z is 0, because we multiply the
            // end result by 0 if z is zero, ensuring we return 0 if z is zero.
            z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function log2(uint256 x) internal pure returns (uint256 r) {
        require(x > 0, "UNDEFINED");

        assembly {
            r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            r := or(r, shl(2, lt(0xf, shr(r, x))))
            r := or(r, shl(1, lt(0x3, shr(r, x))))
            r := or(r, lt(0x1, shr(r, x)))
        }
    }

    function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly {
            // z will equal 0 if y is 0, unlike in Solidity where it will revert.
            z := mod(x, y)
        }
    }

    function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly {
            // z will equal 0 if y is 0, unlike in Solidity where it will revert.
            z := div(x, y)
        }
    }

    /// @dev Will return 0 instead of reverting if y is zero.
    function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly {
            // Add 1 to x * y if x % y > 0.
            z := add(gt(mod(x, y), 0), div(x, y))
        }
    }
}

Settings
{
  "remappings": [
    "@prb/test/=lib/prb-test/src/",
    "forge-std/=lib/forge-std/src/",
    "src/=src/",
    "solmate/=lib/solmate/",
    "@rari-capital/solmate/=lib/solmate/",
    "@eth-optimism/contracts/=node_modules/@eth-optimism/contracts/",
    "@eth-optimism/contracts-bedrock/=node_modules/@eth-optimism/contracts-bedrock/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "fx-portal/contracts/=lib/contracts/contracts/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "prb-test/=lib/prb-test/src/",
    "semaphore-v3/=lib/semaphore-v3/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 10000,
    "details": {
      "peephole": true,
      "inliner": true,
      "deduplicate": true,
      "cse": true,
      "yul": true
    }
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "none"
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "viaIR": false,
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"uint8","name":"_treeDepth","type":"uint8"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"CannotOverwriteRoot","type":"error"},{"inputs":[],"name":"ExpiredRoot","type":"error"},{"inputs":[],"name":"NoRootsSeen","type":"error"},{"inputs":[],"name":"NonExistentRoot","type":"error"},{"inputs":[{"internalType":"uint8","name":"depth","type":"uint8"}],"name":"UnsupportedTreeDepth","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"},{"indexed":false,"internalType":"bool","name":"isLocal","type":"bool"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"root","type":"uint256"},{"indexed":false,"internalType":"uint128","name":"timestamp","type":"uint128"}],"name":"RootAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newExpiry","type":"uint256"}],"name":"RootHistoryExpirySet","type":"event"},{"inputs":[],"name":"getTreeDepth","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isLocal","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"latestRoot","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newRoot","type":"uint256"}],"name":"receiveRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rootHistory","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rootHistoryExpiry","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"expiryTime","type":"uint256"}],"name":"setRootHistoryExpiry","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"bool","name":"_isLocal","type":"bool"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"root","type":"uint256"},{"internalType":"uint256","name":"signalHash","type":"uint256"},{"internalType":"uint256","name":"nullifierHash","type":"uint256"},{"internalType":"uint256","name":"externalNullifierHash","type":"uint256"},{"internalType":"uint256[8]","name":"proof","type":"uint256[8]"}],"name":"verifyProof","outputs":[],"stateMutability":"view","type":"function"}]

60a060405262093a806000556040516100179061015e565b604051809103906000f080158015610033573d6000803e3d6000fd5b50600380546001600160a01b03929092166001600160a01b03199092169190911790556004805460ff60a01b1916600160a01b17905534801561007557600080fd5b5060405162002926380380620029268339810160408190526100969161016c565b806100aa816100e560201b6105aa1760201c565b6100d057604051630220cee360e61b815260ff8216600482015260240160405180910390fd5b60ff166080526100df3361010c565b50610196565b60006010602060ff8416821180159061010457508060ff168460ff1611155b949350505050565b600480546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b611ade8062000e4883390190565b60006020828403121561017e57600080fd5b815160ff8116811461018f57600080fd5b9392505050565b608051610c96620001b2600039600061015f0152610c966000f3fe608060405234801561001057600080fd5b50600436106100d45760003560e01c8063b242e53411610081578063f1c621ee1161005b578063f1c621ee146101c9578063f2fde38b1461021c578063fbde929b1461022f57600080fd5b8063b242e5341461019b578063c70aa727146101ae578063d7b0fef1146101c157600080fd5b80638da5cb5b116100b25780638da5cb5b146101305780638e5cdd5014610158578063b0d690791461018957600080fd5b80630ee04629146100d9578063354ca12014610113578063715018a614610128575b600080fd5b6004546100fe9074010000000000000000000000000000000000000000900460ff1681565b60405190151581526020015b60405180910390f35b610126610121366004610afe565b610242565b005b6101266102f9565b60045460405173ffffffffffffffffffffffffffffffffffffffff909116815260200161010a565b60405160ff7f000000000000000000000000000000000000000000000000000000000000000016815260200161010a565b6000545b60405190815260200161010a565b6101266101a9366004610b73565b61030d565b6101266101bc366004610bb1565b61048c565b61018d6104a0565b6101fb6101d7366004610bb1565b6002602052600090815260409020546fffffffffffffffffffffffffffffffff1681565b6040516fffffffffffffffffffffffffffffffff909116815260200161010a565b61012661022a366004610bca565b6104e5565b61012661023d366004610bb1565b610599565b61024b856105d1565b60035460408051608081018252878152602081018690528082018790526060810185905290517f2357251100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff909216916323572511916102c291859190600401610bee565b60006040518083038186803b1580156102da57600080fd5b505afa1580156102ee573d6000803e3d6000fd5b505050505050505050565b610301610693565b61030b6000610964565b565b610315610693565b73ffffffffffffffffffffffffffffffffffffffff82166103bd576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603260248201527f43726f7373446f6d61696e4f776e61626c65333a206e6577206f776e6572206960448201527f7320746865207a65726f2061646472657373000000000000000000000000000060648201526084015b60405180910390fd5b60006103de60045473ffffffffffffffffffffffffffffffffffffffff1690565b90506103e983610964565b6004805483151574010000000000000000000000000000000000000000027fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff90911617905560405173ffffffffffffffffffffffffffffffffffffffff80851691908316907f7fdc2a4b6eb39ec3363d710d188620bd1e97b3c434161f187b4d0dc0544faa589061047f90861515815260200190565b60405180910390a3505050565b610494610693565b61049d816109db565b50565b60006001546000036104de576040517f5b8dabb700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5060015490565b6104ed610693565b73ffffffffffffffffffffffffffffffffffffffff8116610590576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f646472657373000000000000000000000000000000000000000000000000000060648201526084016103b4565b61049d81610964565b6105a1610693565b61049d81610a16565b60006010602060ff841682118015906105c957508060ff168460ff1611155b949350505050565b60015481036105dd5750565b6000818152600260205260408120546fffffffffffffffffffffffffffffffff1690819003610638576040517fddae3b7100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6000546106576fffffffffffffffffffffffffffffffff831642610c2e565b111561068f576040517f3ae7359e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050565b60045474010000000000000000000000000000000000000000900460ff161561077957336106d660045473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff161461030b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602c60248201527f43726f7373446f6d61696e4f776e61626c65333a2063616c6c6572206973206e60448201527f6f7420746865206f776e6572000000000000000000000000000000000000000060648201526084016103b4565b73420000000000000000000000000000000000000733811461081d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603060248201527f43726f7373446f6d61696e4f776e61626c65333a2063616c6c6572206973206e60448201527f6f7420746865206d657373656e6765720000000000000000000000000000000060648201526084016103b4565b8073ffffffffffffffffffffffffffffffffffffffff16636e296e456040518163ffffffff1660e01b8152600401602060405180830381865afa158015610868573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061088c9190610c6c565b73ffffffffffffffffffffffffffffffffffffffff166108c160045473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff161461049d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602c60248201527f43726f7373446f6d61696e4f776e61626c65333a2063616c6c6572206973206e60448201527f6f7420746865206f776e6572000000000000000000000000000000000000000060648201526084016103b4565b6004805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b60008190556040518181527f147b815b6a3a8dd5d49310410e089f6b5e9f3782e944772edc938c8bb48ef1219060200160405180910390a150565b6000818152600260205260409020546fffffffffffffffffffffffffffffffff168015610a6f576040517f6650c4d100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600182905560008281526002602090815260409182902080547fffffffffffffffffffffffffffffffff0000000000000000000000000000000016426fffffffffffffffffffffffffffffffff8116918217909255835186815292830152917fe97c89cbb137505b36f55ebfc9732fd6c4c73ff43d49db239fc25f6e7a534145910160405180910390a1505050565b6000806000806000610180808789031215610b1857600080fd5b86359550602087013594506040870135935060608701359250878188011115610b4057600080fd5b506080860190509295509295909350565b73ffffffffffffffffffffffffffffffffffffffff8116811461049d57600080fd5b60008060408385031215610b8657600080fd5b8235610b9181610b51565b915060208301358015158114610ba657600080fd5b809150509250929050565b600060208284031215610bc357600080fd5b5035919050565b600060208284031215610bdc57600080fd5b8135610be781610b51565b9392505050565b610180810161010080858437600090830181815284915b6004811015610c24578251825260209283019290910190600101610c05565b5050509392505050565b600082821015610c67577f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b500390565b600060208284031215610c7e57600080fd5b8151610be781610b5156fea164736f6c634300080f000a608060405234801561001057600080fd5b50611abe806100206000396000f3fe608060405234801561001057600080fd5b50600436106100415760003560e01c8063235725111461004657806344f636921461005b578063f2457c8d14610084575b600080fd5b61005961005436600461198b565b610097565b005b61006e6100693660046119c2565b61032f565b60405161007b91906119e6565b60405180910390f35b610059610092366004611a17565b61038c565b6000806100a3836106c2565b9150915060006040516101008682377f168e4fddac50a40d5bcff39c7fa9207cd368444c0c01a86690a6645b52f3aa1f6101008201527f2139a256456825daa623957c4f2ea1a0d26f135769e450759142a7159b0a44766101208201527f07859424108de88bfbe5c80a19c0e80ba35fda4383d3fd125305dd04b4c08fe46101408201527f142ad7a93ca0c554a9f0303059e5a24e85400004a730598bd423b0090f4b3d4a6101608201527f2d4d9aa7e302d9df41749d5507949d05dbea33fbb16c643b22f599a2be6df2e26101808201527f14bedd503c37ceb061d8ec60209fe345ce89830a19230301f076caff004d19266101a08201527f0967032fcbf776d1afc985f88877f182d38480a653f2decaa9794cbc3bf3060c6101c08201527f0e187847ad4c798374d0d6732bf501847dd68bc0e071241e0213bc7fc13db7ab6101e08201527e1752a100a72fdf1e5a5d6ea841cc20ec838bccfcf7bd559e79f1c9c759b6a06102008201527f192a8cc13cd9f762871f21e43451c6ca9eeab2cb2987c4e366a185c25dac2e7f61022082015283610240820152826102608201527f198e9393920d483a7260bfb731fb5d25f1aa493335a9e71297e485b7aef312c26102808201527f1800deef121f1e76426a00665e5c4479674322d4f75edadd46debd5cd992f6ed6102a08201527f275dc4a288d1afb3cbb1ac09187524c7db36395df7be3b99e673b13a075a65ec6102c08201527f1d9befcd05a5323e6da4d435f3b617cdb3af83285c2df711ef39c01571827f9d6102e08201526020816103008360085afa905116905080610328576040517f7fcdd1f400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050505050565b61033761190d565b61034a82358360015b60200201356109c8565b81526103686060830135604084013560a08501356080860135610b67565b6020830152604082015261038260c0830135836007610340565b6060820152919050565b60008061039f84825b6020020135611041565b909250905060008080806103bb604089013560208a0135611165565b929650909450925090506000806103d38a6003610395565b915091506000806103e38b6106c2565b915091506103ef61192b565b8a8152602081018a905260408101889052606081018990526080810186905260a0810187905260c0810185905260e081018490527f168e4fddac50a40d5bcff39c7fa9207cd368444c0c01a86690a6645b52f3aa1f6101008201527f2139a256456825daa623957c4f2ea1a0d26f135769e450759142a7159b0a44766101208201527f07859424108de88bfbe5c80a19c0e80ba35fda4383d3fd125305dd04b4c08fe46101408201527f142ad7a93ca0c554a9f0303059e5a24e85400004a730598bd423b0090f4b3d4a6101608201527f2d4d9aa7e302d9df41749d5507949d05dbea33fbb16c643b22f599a2be6df2e26101808201527f14bedd503c37ceb061d8ec60209fe345ce89830a19230301f076caff004d19266101a08201527f0967032fcbf776d1afc985f88877f182d38480a653f2decaa9794cbc3bf3060c6101c08201527f0e187847ad4c798374d0d6732bf501847dd68bc0e071241e0213bc7fc13db7ab6101e08201527e1752a100a72fdf1e5a5d6ea841cc20ec838bccfcf7bd559e79f1c9c759b6a06102008201527f192a8cc13cd9f762871f21e43451c6ca9eeab2cb2987c4e366a185c25dac2e7f610220820152610240810183905261026081018290527f198e9393920d483a7260bfb731fb5d25f1aa493335a9e71297e485b7aef312c26102808201527f1800deef121f1e76426a00665e5c4479674322d4f75edadd46debd5cd992f6ed6102a08201527f275dc4a288d1afb3cbb1ac09187524c7db36395df7be3b99e673b13a075a65ec6102c08201527f1d9befcd05a5323e6da4d435f3b617cdb3af83285c2df711ef39c01571827f9d6102e0820152600061065e61194a565b6020816103008560085afa915081158061067a57508051600114155b156106b1576040517f7fcdd1f400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b505050505050505050505050505050565b6000806000600190506040516040810160007f0335f514c2acb9b255aae85514122267cd7d16e374c6231a2c34417d3449125483527f07fa1580c1cc3ed4f6d660c6f60f86afedd8a12fb90b2e8ed4f7e310c88b97f760208401527f20b781dd0db3b7980a4b3814128c86e597e1442d0fc9eb7f932a5229494d6b7982527f17d1cef436eb2f665670c7b34854e62c227043a7b111a539c0295518bbab3ca96020830152863590508060408301527f30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f000000181108416935060408260608460075afa8416935060408360808560065afa841693507f260945445b4205f874ab7e203a18240e51c9d3c896ea300d40132b1c2f50299a82527f11087a8b76b0f957e1c482c909302916795f811a06866059e403689c01c903fb6020830152602087013590508060408301527f30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f000000181108416935060408260608460075afa8416935060408360808560065afa841693507f11d20fd81c0e5cf48ba1469ccb8ac99dcdc7cf746a6e70762a939d63dcc52dbf82527f2d447c5f134eff527d7bcaace88b3842c42b800d8dc049e0a6e72f5efc14293d6020830152604087013590508060408301527f30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f000000181108416935060408260608460075afa8416935060408360808560065afa841693507f107cd54a1606a6a873bed4c1b76af48975e66dcf6c127b4c799ad4fdd230b87c82527f1a51b81f6c07725ebcc56ebb1c482b99340eaa9bcb86cc09aed6f58a28e530b66020830152606087013590508060408301527f30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f00000018110841693505060408160608360075afa831692505060408160808360065afa815160209092015191945090925016806109c2576040517fa54f8e2700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b50915091565b60007f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4783101580610a1957507f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478210155b15610a50576040517f7fcdd1f400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b82158015610a5c575081155b15610a6957506000610b61565b6000610ade7f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4760037f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47877f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47898a0909086114b0565b9050808303610af3575050600182901b610b61565b7f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478082068103068303610b2d575050600182811b17610b61565b6040517f7fcdd1f400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b505b92915050565b6000807f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4786101580610bb957507f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478510155b80610be457507f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478410155b80610c0f57507f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478310155b15610c46576040517f7fcdd1f400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b82848688171717600003610c5f57506000905080611038565b600080807f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47610caf60037f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47611a73565b7f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478a8c0909905060007f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478a7f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478c8d0909905060007f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478a7f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478c8d090990507f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47807f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478c860984087f2b149d40ceb8aaae81be18991be06ac3b5b4c5e559dbefa33267e6dc24a138e5089450610e707f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47807f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478e870984087f2fcd3ac2a640a154eb23960892a85a68f031ca0c8344b23a577dcf1052b9e775087f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd479081900681030690565b9350505050600080610ef77f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4780610ea957610ea9611a44565b7f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478586097f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47878809086114b0565b9050610f687f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd477f183227397098d014dc2822db40c0ac2ecbc0b548b438e5469e10460b6c3e7ea47f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478488080961153f565b15915050610f7783838361159b565b90935091508683148015610f8a57508186145b15610fb45780610f9b576000610f9e565b60025b60ff1660028a901b176000179450879350611034565b7f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478084068103068714801561100e57507f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4780830681030686145b15610b2d578061101f576000611022565b60025b60ff1660028a901b1760011794508793505b5050505b94509492505050565b6000808260000361105757506000928392509050565b600183811c9250808416147f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4783106110bb576040517f7fcdd1f400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61112e7f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4760037f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47867f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4788890909086114b0565b915080156109c2577f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47808306810306915050915091565b600080808085158015611176575084155b1561118c575060009250829150819050806114a7565b600286811c945085935060018088161490808816147f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47861015806111f057507f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478510155b15611227576040517f7fcdd1f400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60007f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4761127560037f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47611a73565b7f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47888a0909905060007f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47887f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478a8b0909905060007f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47887f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478a8b090990507f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47807f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478a860984087f2b149d40ceb8aaae81be18991be06ac3b5b4c5e559dbefa33267e6dc24a138e50896506114367f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47807f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478c870984087f2fcd3ac2a640a154eb23960892a85a68f031ca0c8344b23a577dcf1052b9e775087f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd479081900681030690565b955061144387878661159b565b909750955084156114a1577f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4780880681030696507f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4780870681030695505b50505050505b92959194509250565b60006114dc827f0c19139cb84c680a6e14116da060561765e05aa45a1c72a34f082305b61f3f526117f2565b9050817f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478283091461153a576040517f7fcdd1f400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b919050565b60008061156c837f0c19139cb84c680a6e14116da060561765e05aa45a1c72a34f082305b61f3f526117f2565b9050827f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47828309149392505050565b600080806115f17f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47808788097f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47898a09086114b0565b90508315611622577f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47908190068103065b6116917f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd477f183227397098d014dc2822db40c0ac2ecbc0b548b438e5469e10460b6c3e7ea47f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47848a08096114b0565b92507f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd476116e17f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4760028609611882565b860991507f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd476117587f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd478485097f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd479081900681030690565b7f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4785860908861415806117b257507f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47808385096002098514155b156117e9576040517f7fcdd1f400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b50935093915050565b60008060405160208152602080820152602060408201528460608201528360808201527f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4760a082015260208160c08360055afa90519250905080610b5f576040517f7fcdd1f400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60006118ae827f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd456117f2565b90507f30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd4781830960011461153a576040517f7fcdd1f400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60405180608001604052806004906020820280368337509192915050565b6040518061030001604052806018906020820280368337509192915050565b60405180602001604052806001906020820280368337509192915050565b806101008101831015610b6157600080fd5b8060808101831015610b6157600080fd5b600080610180838503121561199f57600080fd5b6119a98484611968565b91506119b984610100850161197a565b90509250929050565b600061010082840312156119d557600080fd5b6119df8383611968565b9392505050565b60808101818360005b6004811015611a0e5781518352602092830192909101906001016119ef565b50505092915050565b6000806101008385031215611a2b57600080fd5b611a35848461197a565b91506119b9846080850161197a565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082821015611aac577f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b50039056fea164736f6c634300080f000a000000000000000000000000000000000000000000000000000000000000001e

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100d45760003560e01c8063b242e53411610081578063f1c621ee1161005b578063f1c621ee146101c9578063f2fde38b1461021c578063fbde929b1461022f57600080fd5b8063b242e5341461019b578063c70aa727146101ae578063d7b0fef1146101c157600080fd5b80638da5cb5b116100b25780638da5cb5b146101305780638e5cdd5014610158578063b0d690791461018957600080fd5b80630ee04629146100d9578063354ca12014610113578063715018a614610128575b600080fd5b6004546100fe9074010000000000000000000000000000000000000000900460ff1681565b60405190151581526020015b60405180910390f35b610126610121366004610afe565b610242565b005b6101266102f9565b60045460405173ffffffffffffffffffffffffffffffffffffffff909116815260200161010a565b60405160ff7f000000000000000000000000000000000000000000000000000000000000001e16815260200161010a565b6000545b60405190815260200161010a565b6101266101a9366004610b73565b61030d565b6101266101bc366004610bb1565b61048c565b61018d6104a0565b6101fb6101d7366004610bb1565b6002602052600090815260409020546fffffffffffffffffffffffffffffffff1681565b6040516fffffffffffffffffffffffffffffffff909116815260200161010a565b61012661022a366004610bca565b6104e5565b61012661023d366004610bb1565b610599565b61024b856105d1565b60035460408051608081018252878152602081018690528082018790526060810185905290517f2357251100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff909216916323572511916102c291859190600401610bee565b60006040518083038186803b1580156102da57600080fd5b505afa1580156102ee573d6000803e3d6000fd5b505050505050505050565b610301610693565b61030b6000610964565b565b610315610693565b73ffffffffffffffffffffffffffffffffffffffff82166103bd576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603260248201527f43726f7373446f6d61696e4f776e61626c65333a206e6577206f776e6572206960448201527f7320746865207a65726f2061646472657373000000000000000000000000000060648201526084015b60405180910390fd5b60006103de60045473ffffffffffffffffffffffffffffffffffffffff1690565b90506103e983610964565b6004805483151574010000000000000000000000000000000000000000027fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff90911617905560405173ffffffffffffffffffffffffffffffffffffffff80851691908316907f7fdc2a4b6eb39ec3363d710d188620bd1e97b3c434161f187b4d0dc0544faa589061047f90861515815260200190565b60405180910390a3505050565b610494610693565b61049d816109db565b50565b60006001546000036104de576040517f5b8dabb700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5060015490565b6104ed610693565b73ffffffffffffffffffffffffffffffffffffffff8116610590576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f646472657373000000000000000000000000000000000000000000000000000060648201526084016103b4565b61049d81610964565b6105a1610693565b61049d81610a16565b60006010602060ff841682118015906105c957508060ff168460ff1611155b949350505050565b60015481036105dd5750565b6000818152600260205260408120546fffffffffffffffffffffffffffffffff1690819003610638576040517fddae3b7100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6000546106576fffffffffffffffffffffffffffffffff831642610c2e565b111561068f576040517f3ae7359e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050565b60045474010000000000000000000000000000000000000000900460ff161561077957336106d660045473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff161461030b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602c60248201527f43726f7373446f6d61696e4f776e61626c65333a2063616c6c6572206973206e60448201527f6f7420746865206f776e6572000000000000000000000000000000000000000060648201526084016103b4565b73420000000000000000000000000000000000000733811461081d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603060248201527f43726f7373446f6d61696e4f776e61626c65333a2063616c6c6572206973206e60448201527f6f7420746865206d657373656e6765720000000000000000000000000000000060648201526084016103b4565b8073ffffffffffffffffffffffffffffffffffffffff16636e296e456040518163ffffffff1660e01b8152600401602060405180830381865afa158015610868573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061088c9190610c6c565b73ffffffffffffffffffffffffffffffffffffffff166108c160045473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff161461049d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602c60248201527f43726f7373446f6d61696e4f776e61626c65333a2063616c6c6572206973206e60448201527f6f7420746865206f776e6572000000000000000000000000000000000000000060648201526084016103b4565b6004805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b60008190556040518181527f147b815b6a3a8dd5d49310410e089f6b5e9f3782e944772edc938c8bb48ef1219060200160405180910390a150565b6000818152600260205260409020546fffffffffffffffffffffffffffffffff168015610a6f576040517f6650c4d100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600182905560008281526002602090815260409182902080547fffffffffffffffffffffffffffffffff0000000000000000000000000000000016426fffffffffffffffffffffffffffffffff8116918217909255835186815292830152917fe97c89cbb137505b36f55ebfc9732fd6c4c73ff43d49db239fc25f6e7a534145910160405180910390a1505050565b6000806000806000610180808789031215610b1857600080fd5b86359550602087013594506040870135935060608701359250878188011115610b4057600080fd5b506080860190509295509295909350565b73ffffffffffffffffffffffffffffffffffffffff8116811461049d57600080fd5b60008060408385031215610b8657600080fd5b8235610b9181610b51565b915060208301358015158114610ba657600080fd5b809150509250929050565b600060208284031215610bc357600080fd5b5035919050565b600060208284031215610bdc57600080fd5b8135610be781610b51565b9392505050565b610180810161010080858437600090830181815284915b6004811015610c24578251825260209283019290910190600101610c05565b5050509392505050565b600082821015610c67577f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b500390565b600060208284031215610c7e57600080fd5b8151610be781610b5156fea164736f6c634300080f000a

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000000000000000000000000000000000000000001e

-----Decoded View---------------
Arg [0] : _treeDepth (uint8): 30

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000000000000000000000000000000000000000001e


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.