Overview
ETH Balance
0 ETH
ETH Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 160 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Deploy Superchai... | 9774314 | 75 days ago | IN | 0 ETH | 0.00000202 | ||||
Deploy Superchai... | 9661578 | 78 days ago | IN | 0 ETH | 0.00000106 | ||||
Deploy Superchai... | 9582793 | 80 days ago | IN | 0 ETH | 0.00000104 | ||||
Deploy Superchai... | 9581342 | 80 days ago | IN | 0 ETH | 0.00000106 | ||||
Deploy Superchai... | 9580700 | 80 days ago | IN | 0 ETH | 0.00000104 | ||||
Deploy Superchai... | 9580679 | 80 days ago | IN | 0 ETH | 0.00000104 | ||||
Deploy Superchai... | 9580671 | 80 days ago | IN | 0 ETH | 0.00000104 | ||||
Deploy Superchai... | 9580518 | 80 days ago | IN | 0 ETH | 0.00000104 | ||||
Deploy Superchai... | 9580305 | 80 days ago | IN | 0 ETH | 0.00000104 | ||||
Deploy Superchai... | 9580291 | 80 days ago | IN | 0 ETH | 0.00000104 | ||||
Deploy Superchai... | 9580279 | 80 days ago | IN | 0 ETH | 0.00000104 | ||||
Deploy Superchai... | 9580209 | 80 days ago | IN | 0 ETH | 0.00000104 | ||||
Deploy Superchai... | 9580192 | 80 days ago | IN | 0 ETH | 0.00000104 | ||||
Deploy Superchai... | 9580034 | 80 days ago | IN | 0 ETH | 0.00000104 | ||||
Deploy Superchai... | 9579749 | 80 days ago | IN | 0 ETH | 0.00000106 | ||||
Deploy Superchai... | 9579642 | 80 days ago | IN | 0 ETH | 0.00000101 | ||||
Deploy Superchai... | 9579470 | 80 days ago | IN | 0 ETH | 0.00000104 | ||||
Deploy Superchai... | 9578303 | 80 days ago | IN | 0 ETH | 0.00000124 | ||||
Deploy Superchai... | 9578067 | 80 days ago | IN | 0 ETH | 0.00000101 | ||||
Deploy Superchai... | 9577743 | 80 days ago | IN | 0 ETH | 0.00000106 | ||||
Deploy Superchai... | 9577693 | 80 days ago | IN | 0 ETH | 0.00000099 | ||||
Deploy Superchai... | 9577628 | 80 days ago | IN | 0 ETH | 0.00000101 | ||||
Deploy Superchai... | 9577422 | 80 days ago | IN | 0 ETH | 0.00000104 | ||||
Deploy Superchai... | 9577383 | 80 days ago | IN | 0 ETH | 0.00000124 | ||||
Deploy Superchai... | 9577083 | 80 days ago | IN | 0 ETH | 0.00000104 |
Latest 25 internal transactions (View All)
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
SuperchainTokenFactory
Compiler Version
v0.8.28+commit.7893614a
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import { L2NativeSuperchainERC20 } from "@superchain/L2NativeSuperchainERC20.sol"; import { EIP712 } from "@openzeppelin/contracts/utils/cryptography/EIP712.sol"; import { ECDSA } from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; /** * @title Superchain Token Factory * @notice Factory for deploying Superchain ERC20, across the Superchain. * @author CreateMyToken (https://www.createmytoken.com/) */ contract SuperchainTokenFactory is EIP712 { bytes32 private constant DEPLOY_TYPEHASH = keccak256("Deployment(address creator,bytes32 params)"); error SuperchainFactory__InvalidSigner(address signer, address expected); struct TokenDetails { bool allowPermissionless; address creator; string name; string symbol; uint256 supply; uint256 hubChainId; bytes32 nonce; } struct Signature { uint8 v; bytes32 r; bytes32 s; } mapping(address deployedToken => TokenDetails tokenDetails) public deploymentInfo; constructor() EIP712("Superchain Token Factory", "1") {} function deploySuperchainERC20( TokenDetails calldata _tokenDetails, Signature calldata _signature ) external returns (address deployedToken) { bytes32 guardedSalt = keccak256(abi.encode(_tokenDetails)); if (!_tokenDetails.allowPermissionless) { bytes32 structHash = keccak256(abi.encode(DEPLOY_TYPEHASH, _tokenDetails.creator, guardedSalt)); // This uses EIP712 TypeHash, which includes the chainId, effectively requiring the // creator to sign a new message for each chain, disabling permissionless deploys. bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, _signature.v, _signature.r, _signature.s); if (signer != _tokenDetails.creator) { revert SuperchainFactory__InvalidSigner(signer, _tokenDetails.creator); } } deployedToken = address( new L2NativeSuperchainERC20{ salt: guardedSalt }( _tokenDetails.creator, _tokenDetails.name, _tokenDetails.symbol, _tokenDetails.supply, _tokenDetails.hubChainId ) ); deploymentInfo[deployedToken] = _tokenDetails; } }
// SPDX-License-Identifier: MIT // Factory: CreateMyToken pragma solidity 0.8.28; import { IERC20, ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { IERC165, ERC165 } from "@openzeppelin/contracts/utils/introspection/ERC165.sol"; import { ERC20Permit } from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol"; import { IERC7802 } from "./IERC7802.sol"; /** * @title SuperchainERC20 * @notice A standard ERC20 extension implementing IERC7802 for unified cross-chain fungibility across * the Superchain. Allows the SuperchainTokenBridge to mint and burn tokens as needed. */ contract L2NativeSuperchainERC20 is ERC20, ERC20Permit, ERC165, IERC7802 { address internal constant SUPERCHAIN_TOKEN_BRIDGE = 0x4200000000000000000000000000000000000028; error Unauthorized(); modifier onlySuperchainTokenBridge() { if (msg.sender != SUPERCHAIN_TOKEN_BRIDGE) { revert Unauthorized(); } _; } constructor( address _creator, string memory _name, string memory _symbol, uint256 _supply, uint256 _hubChainId ) ERC20(_name, _symbol) ERC20Permit(_name) { if (block.chainid == _hubChainId) { _mint(_creator, _supply); } } /// @notice Allows the SuperchainTokenBridge to mint tokens. function crosschainMint(address _to, uint256 _amount) external onlySuperchainTokenBridge { _mint(_to, _amount); emit CrosschainMint(_to, _amount, msg.sender); } /// @notice Allows the SuperchainTokenBridge to burn tokens. function crosschainBurn(address _from, uint256 _amount) external onlySuperchainTokenBridge { _burn(_from, _amount); emit CrosschainBurn(_from, _amount, msg.sender); } function supportsInterface(bytes4 _interfaceId) public view override(IERC165, ERC165) returns (bool) { return _interfaceId == type(IERC7802).interfaceId || _interfaceId == type(IERC20).interfaceId || super.supportsInterface(_interfaceId); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "./MessageHashUtils.sol"; import {ShortStrings, ShortString} from "../ShortStrings.sol"; import {IERC5267} from "../../interfaces/IERC5267.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. * * @custom:oz-upgrades-unsafe-allow state-variable-immutable */ abstract contract EIP712 is IERC5267 { using ShortStrings for *; bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to // invalidate the cached domain separator if the chain id changes. bytes32 private immutable _cachedDomainSeparator; uint256 private immutable _cachedChainId; address private immutable _cachedThis; bytes32 private immutable _hashedName; bytes32 private immutable _hashedVersion; ShortString private immutable _name; ShortString private immutable _version; string private _nameFallback; string private _versionFallback; /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _name = name.toShortStringWithFallback(_nameFallback); _version = version.toShortStringWithFallback(_versionFallback); _hashedName = keccak256(bytes(name)); _hashedVersion = keccak256(bytes(version)); _cachedChainId = block.chainid; _cachedDomainSeparator = _buildDomainSeparator(); _cachedThis = address(this); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { if (address(this) == _cachedThis && block.chainid == _cachedChainId) { return _cachedDomainSeparator; } else { return _buildDomainSeparator(); } } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: By default this function reads _name which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Name() internal view returns (string memory) { return _name.toStringWithFallback(_nameFallback); } /** * @dev The version parameter for the EIP712 domain. * * NOTE: By default this function reads _version which is an immutable value. * It only reads from storage if necessary (in case the value is too large to fit in a ShortString). */ // solhint-disable-next-line func-name-mixedcase function _EIP712Version() internal view returns (string memory) { return _version.toStringWithFallback(_versionFallback); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC-20 * applications. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Skips emitting an {Approval} event indicating an allowance update. This is not * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve]. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * * ```solidity * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol) pragma solidity ^0.8.20; import {IERC20Permit} from "./IERC20Permit.sol"; import {ERC20} from "../ERC20.sol"; import {ECDSA} from "../../../utils/cryptography/ECDSA.sol"; import {EIP712} from "../../../utils/cryptography/EIP712.sol"; import {Nonces} from "../../../utils/Nonces.sol"; /** * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces { bytes32 private constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Permit deadline has expired. */ error ERC2612ExpiredSignature(uint256 deadline); /** * @dev Mismatched signature. */ error ERC2612InvalidSigner(address signer, address owner); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC-20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @inheritdoc IERC20Permit */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > deadline) { revert ERC2612ExpiredSignature(deadline); } bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); if (signer != owner) { revert ERC2612InvalidSigner(signer, owner); } _approve(owner, spender, value); } /** * @inheritdoc IERC20Permit */ function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) { return super.nonces(owner); } /** * @inheritdoc IERC20Permit */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view virtual returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IERC165 } from "@openzeppelin/contracts/interfaces/IERC165.sol"; /// @title IERC7802 /// @notice Defines the interface for crosschain ERC20 transfers. interface IERC7802 is IERC165 { /// @notice Emitted when a crosschain transfer mints tokens. /// @param to Address of the account tokens are being minted for. /// @param amount Amount of tokens minted. /// @param sender Address of the account that finilized the crosschain transfer. event CrosschainMint(address indexed to, uint256 amount, address indexed sender); /// @notice Emitted when a crosschain transfer burns tokens. /// @param from Address of the account tokens are being burned from. /// @param amount Amount of tokens burned. /// @param sender Address of the account that initiated the crosschain transfer. event CrosschainBurn(address indexed from, uint256 amount, address indexed sender); /// @notice Mint tokens through a crosschain transfer. /// @param _to Address to mint tokens to. /// @param _amount Amount of tokens to mint. function crosschainMint(address _to, uint256 _amount) external; /// @notice Burn tokens through a crosschain transfer. /// @param _from Address to burn tokens from. /// @param _amount Amount of tokens to burn. function crosschainBurn(address _from, uint256 _amount) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol) pragma solidity ^0.8.20; import {StorageSlot} from "./StorageSlot.sol"; // | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | // | length | 0x BB | type ShortString is bytes32; /** * @dev This library provides functions to convert short memory strings * into a `ShortString` type that can be used as an immutable variable. * * Strings of arbitrary length can be optimized using this library if * they are short enough (up to 31 bytes) by packing them with their * length (1 byte) in a single EVM word (32 bytes). Additionally, a * fallback mechanism can be used for every other case. * * Usage example: * * ```solidity * contract Named { * using ShortStrings for *; * * ShortString private immutable _name; * string private _nameFallback; * * constructor(string memory contractName) { * _name = contractName.toShortStringWithFallback(_nameFallback); * } * * function name() external view returns (string memory) { * return _name.toStringWithFallback(_nameFallback); * } * } * ``` */ library ShortStrings { // Used as an identifier for strings longer than 31 bytes. bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF; error StringTooLong(string str); error InvalidShortString(); /** * @dev Encode a string of at most 31 chars into a `ShortString`. * * This will trigger a `StringTooLong` error is the input string is too long. */ function toShortString(string memory str) internal pure returns (ShortString) { bytes memory bstr = bytes(str); if (bstr.length > 31) { revert StringTooLong(str); } return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length)); } /** * @dev Decode a `ShortString` back to a "normal" string. */ function toString(ShortString sstr) internal pure returns (string memory) { uint256 len = byteLength(sstr); // using `new string(len)` would work locally but is not memory safe. string memory str = new string(32); assembly ("memory-safe") { mstore(str, len) mstore(add(str, 0x20), sstr) } return str; } /** * @dev Return the length of a `ShortString`. */ function byteLength(ShortString sstr) internal pure returns (uint256) { uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF; if (result > 31) { revert InvalidShortString(); } return result; } /** * @dev Encode a string into a `ShortString`, or write it to storage if it is too long. */ function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) { if (bytes(value).length < 32) { return toShortString(value); } else { StorageSlot.getStringSlot(store).value = value; return ShortString.wrap(FALLBACK_SENTINEL); } } /** * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}. */ function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return toString(value); } else { return store; } } /** * @dev Return the length of a string that was encoded to `ShortString` or written to storage using * {setWithFallback}. * * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of * actual characters as the UTF-8 encoding of a single character can span over multiple bytes. */ function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) { if (ShortString.unwrap(value) != FALLBACK_SENTINEL) { return byteLength(value); } else { return bytes(store).length; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) pragma solidity ^0.8.20; /** * @dev Provides tracking nonces for addresses. Nonces will only increment. */ abstract contract Nonces { /** * @dev The nonce used for an `account` is not the expected current nonce. */ error InvalidAccountNonce(address account, uint256 currentNonce); mapping(address account => uint256) private _nonces; /** * @dev Returns the next unused nonce for an address. */ function nonces(address owner) public view virtual returns (uint256) { return _nonces[owner]; } /** * @dev Consumes a nonce. * * Returns the current value and increments nonce. */ function _useNonce(address owner) internal virtual returns (uint256) { // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be // decremented or reset. This guarantees that the nonce never overflows. unchecked { // It is important to do x++ and not ++x here. return _nonces[owner]++; } } /** * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`. */ function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * // Define the slot. Alternatively, use the SlotDerivation library to derive the slot. * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * TIP: Consider using this library along with {SlotDerivation}. */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct Int256Slot { int256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Int256Slot` with member `value` located at `slot`. */ function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } /** * @dev Returns a `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
{ "remappings": [ "forge-std/=node_modules/forge-std/src/", "@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/", "@src/=contracts/", "@vendor/=contracts/vendor/", "@superchain/=contracts/superchain/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "none", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } }, "evmVersion": "paris", "viaIR": true, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"expected","type":"address"}],"name":"SuperchainFactory__InvalidSigner","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"inputs":[{"components":[{"internalType":"bool","name":"allowPermissionless","type":"bool"},{"internalType":"address","name":"creator","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"supply","type":"uint256"},{"internalType":"uint256","name":"hubChainId","type":"uint256"},{"internalType":"bytes32","name":"nonce","type":"bytes32"}],"internalType":"struct SuperchainTokenFactory.TokenDetails","name":"_tokenDetails","type":"tuple"},{"components":[{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"internalType":"struct SuperchainTokenFactory.Signature","name":"_signature","type":"tuple"}],"name":"deploySuperchainERC20","outputs":[{"internalType":"address","name":"deployedToken","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"deployedToken","type":"address"}],"name":"deploymentInfo","outputs":[{"internalType":"bool","name":"allowPermissionless","type":"bool"},{"internalType":"address","name":"creator","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"uint256","name":"supply","type":"uint256"},{"internalType":"uint256","name":"hubChainId","type":"uint256"},{"internalType":"bytes32","name":"nonce","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
6101606040523461013d57604051610018604082610142565b6018815260208101907f5375706572636861696e20546f6b656e20466163746f72790000000000000000825260405191610053604084610142565b600183526020830191603160f81b835261006c8161017b565b610120526100798461033d565b61014052519020918260e05251902080610100524660a0526040519060208201927f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f8452604083015260608201524660808201523060a082015260a081526100e260c082610142565b5190206080523060c05260405161243290816104dc823960805181610985015260a05181610a42015260c0518161094f015260e051816109d4015261010051816109fa015261012051816101150152610140518161013e0152f35b600080fd5b601f909101601f19168101906001600160401b0382119082101761016557604052565b634e487b7160e01b600052604160045260246000fd5b90815160208110600014610213575090601f8151116101b75760208151910151602082106101a7571790565b6000198260200360031b1b161790565b6040519063305a27a960e01b8252602060048301528181519182602483015260005b8381106101fb5750508160006044809484010152601f80199101168101030190fd5b602082820181015160448784010152859350016101d9565b6001600160401b03811161016557600054600181811c91168015610333575b602082101461031d57601f81116102e8575b50602092601f82116001146102845792819293600092610279575b50508160011b916000199060031b1c19161760005560ff90565b01519050388061025f565b601f1982169360008052806000209160005b8681106102d057508360019596106102b7575b505050811b0160005560ff90565b015160001960f88460031b161c191690553880806102a9565b91926020600181928685015181550194019201610296565b60008052601f6020600020910160051c810190601f830160051c015b8181106103115750610244565b60008155600101610304565b634e487b7160e01b600052602260045260246000fd5b90607f1690610232565b908151602081106000146103c5575090601f8151116103695760208151910151602082106101a7571790565b6040519063305a27a960e01b8252602060048301528181519182602483015260005b8381106103ad5750508160006044809484010152601f80199101168101030190fd5b6020828201810151604487840101528593500161038b565b6001600160401b03811161016557600154600181811c911680156104d1575b602082101461031d57601f811161049b575b50602092601f8211600114610436579281929360009261042b575b50508160011b916000199060031b1c19161760015560ff90565b015190503880610411565b601f198216936001600052806000209160005b868110610483575083600195961061046a575b505050811b0160015560ff90565b015160001960f88460031b161c1916905538808061045c565b91926020600181928685015181550194019201610449565b6001600052601f6020600020910160051c810190601f830160051c015b8181106104c557506103f6565b600081556001016104b8565b90607f16906103e456fe608080604052600436101561001357600080fd5b60003560e01c9081631f612efc146101f95750806384b0196e146100fc5763ce3220f61461004057600080fd5b346100f75760203660031901126100f7576004356001600160a01b038116908190036100f75760005260026020526040600020805461008160018301610801565b9161008e60028201610801565b6003820154916100e360056004830154920154926100d5604051978760ff8a99161515895260018060a01b039060081c16602089015260e0604089015260e0880190610764565b908682036060880152610764565b92608085015260a084015260c08301520390f35b600080fd5b346100f75760003660031901126100f75761019b6101397f0000000000000000000000000000000000000000000000000000000000000000610b79565b6101627f0000000000000000000000000000000000000000000000000000000000000000610c7b565b60206101a96040519261017583856107df565b600084526000368137604051958695600f60f81b875260e08588015260e0870190610764565b908582036040870152610764565b466060850152306080850152600060a085015283810360c085015281808451928381520193019160005b8281106101e257505050500390f35b8351855286955093810193928101926001016101d3565b346100f75760803660031901126100f7576004359067ffffffffffffffff82116100f757816004019160e060031982360301126100f75760603660231901126100f757602082016020815283358015158091036100f75760408401526024820180356001600160a01b038116908190036100f7576060850152604483019261029661028485886108a5565b60e060808901526101208801916108d7565b6102ba60648301916102a8838a6108a5565b898303603f190160a08b0152906108d7565b936084830135968760c08201526102f18160c460a4870135968760e08401520135978861010083015203601f1981018352826107df565b5190206102fd886108f8565b15610666575b61030c84610905565b610316878a610919565b90610321858c610919565b919092604051946116f0948587019487861067ffffffffffffffff871117610588576103728b95608095610380958b9a610d368c396001600160a01b0316895260a060208a018190528901916108d7565b9186830360408801526108d7565b928c6060820152015203906000f5801561065a576001600160a01b03166000818152600260205260409020909590936103b8896108f8565b85549015159160ff90610100600160a81b03906103d490610905565b60081b169216906affffffffffffffffffffff60a81b16171784556103fd600185019189610919565b9067ffffffffffffffff82116105885761041783546107a5565b601f8111610612575b50600090601f83116001146105a95761045e949392916000918361059e575b50508160011b916000199060031b1c19161790555b6002840197610919565b95909667ffffffffffffffff87116105885761047a81546107a5565b97601f8911610540575b60209850600090601f89116001146104da5797809160059798996000926104cf575b50508160011b916000199060031b1c19161790555b600383015560048201550155604051908152f35b013590508a806104a6565b82825289822091601f198a16815b818110610529575091600193918b60059a9b9c941061050f575b505050811b0190556104bb565b0135600019600384901b60f8161c191690558a8080610502565b91938c6001819287870135815501950192016104e8565b816000526020600020601f890160051c81019960208a1061057e575b601f0160051c01985b8981106105725750610484565b60008155600101610565565b909950899061055c565b634e487b7160e01b600052604160045260246000fd5b013590508b8061043f565b8382526020822091601f198416815b8181106105fa575091600193918561045e98979694106105e0575b505050811b019055610454565b0135600019600384901b60f8161c191690558b80806105d3565b919360206001819287870135815501950192016105b8565b836000526020600020601f840160051c81019160208510610650575b601f0160051c01905b8181106106445750610420565b60008155600101610637565b909150819061062e565b6040513d6000823e3d90fd5b604261067185610905565b60405160208101917fa0131f477a44f40384a859fe801970f4e59589f3a85d7798caa2a6b2917b2284835260018060a01b03166040820152836060820152606081526106be6080826107df565b5190206106c961094c565b906040519161190160f01b835260028301526022820152206024359060ff821682036100f75761070d91610704916064359160443591610a68565b90929192610af1565b6001600160a01b0361071e86610905565b6001600160a01b03909216911681036107375750610303565b61074085610905565b63713e3f0d60e01b60009081526004929092526001600160a01b0316602452604490fd5b919082519283825260005b848110610790575050826000602080949584010152601f8019910116010190565b8060208092840101518282860101520161076f565b90600182811c921680156107d5575b60208310146107bf57565b634e487b7160e01b600052602260045260246000fd5b91607f16916107b4565b90601f8019910116810190811067ffffffffffffffff82111761058857604052565b9060405191826000825492610815846107a5565b8084529360018116908115610883575060011461083c575b5061083a925003836107df565b565b90506000929192526020600020906000915b81831061086757505090602061083a928201013861082d565b602091935080600191548385890101520191019091849261084e565b90506020925061083a94915060ff191682840152151560051b8201013861082d565b9035601e19823603018112156100f757016020813591019167ffffffffffffffff82116100f75781360383136100f757565b908060209392818452848401376000828201840152601f01601f1916010190565b3580151581036100f75790565b356001600160a01b03811681036100f75790565b903590601e19813603018212156100f7570180359067ffffffffffffffff82116100f7576020019181360383136100f757565b307f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03161480610a3f575b156109a7577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a08152610a3960c0826107df565b51902090565b507f0000000000000000000000000000000000000000000000000000000000000000461461097e565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411610ae5579160209360809260ff60009560405194855216868401526040830152606082015282805260015afa1561065a576000516001600160a01b03811615610ad95790600090600090565b50600090600190600090565b50505060009160039190565b9190916004811015610b635780610b0757509050565b600060018203610b225763f645eedf60e01b60005260046000fd5b5060028103610b40578263fce698f760e01b60005260045260246000fd5b9091600360009214610b50575050565b6335e2f38360e21b825260045260249150fd5b634e487b7160e01b600052602160045260246000fd5b60ff8114610bc35760ff811690601f8211610bb2576040805192610b9d82856107df565b6020808552840191601f190136833783525290565b632cd44ac360e21b60005260046000fd5b5060405160008160005491610bd7836107a5565b8083529260018116908115610c5c5750600114610bfe575b610bfb925003826107df565b90565b50600080805290917f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e5635b818310610c40575050906020610bfb92820101610bef565b6020919350806001915483858801015201910190918392610c28565b60209250610bfb94915060ff191682840152151560051b820101610bef565b60ff8114610c9f5760ff811690601f8211610bb2576040805192610b9d82856107df565b50604051600154816000610cb2836107a5565b8083529260018116908115610c5c5750600114610cd557610bfb925003826107df565b506001600090815290917fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf65b818310610d19575050906020610bfb92820101610bef565b6020919350806001915483858801015201910190918392610d0156fe61016080604052346104d1576116f0803803809161001d82856104d6565b833981019060a0818303126104d15780516001600160a01b03811691908290036104d15760208101516001600160401b0381116104d1578361006091830161051c565b604082015190936001600160401b0382116104d15761008091830161051c565b92608060608301519201519060409485519161009c87846104d6565b60018352603160f81b6020840190815281519092906001600160401b0381116103db57600354600181811c911680156104c7575b60208210146103bb57601f8111610462575b50806020601f82116001146103fc576000916103f1575b508160011b916000199060031b1c1916176003555b8051906001600160401b0382116103db5760045490600182811c921680156103d1575b60208310146103bb5781601f84931161034b575b50602090601f83116001146102e3576000926102d8575b50508160011b916000199060031b1c1916176004555b61017b81610570565b6101205261018883610701565b6101405260208151910120918260e05251902080610100524660a05285519060208201927f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f84528783015260608201524660808201523060a082015260a081526101f360c0826104d6565b5190206080523060c0524614610254575b8251610eac9081610844823960805181610b9a015260a05181610c57015260c05181610b64015260e05181610be901526101005181610c0f0152610120518161039f015261014051816103c80152f35b81156102c2576002548181018091116102ac576002557fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60206000928484528382528584208181540190558551908152a33880610204565b634e487b7160e01b600052601160045260246000fd5b63ec442f0560e01b600052600060045260246000fd5b01519050388061015c565b600460009081528281209350601f198516905b818110610333575090846001959493921061031a575b505050811b01600455610172565b015160001960f88460031b161c1916905538808061030c565b929360206001819287860151815501950193016102f6565b60046000529091507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f840160051c810191602085106103b1575b90601f859493920160051c01905b8181106103a25750610145565b60008155849350600101610395565b9091508190610387565b634e487b7160e01b600052602260045260246000fd5b91607f1691610131565b634e487b7160e01b600052604160045260246000fd5b9050830151386100f9565b600360009081528181209250601f198416905b81811061044a57509083600194939210610431575b5050811b0160035561010e565b85015160001960f88460031b161c191690553880610424565b9192602060018192868a01518155019401920161040f565b60036000527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f830160051c810191602084106104bd575b601f0160051c01905b8181106104b157506100e2565b600081556001016104a4565b909150819061049b565b90607f16906100d0565b600080fd5b601f909101601f19168101906001600160401b038211908210176103db57604052565b60005b83811061050c5750506000910152565b81810151838201526020016104fc565b81601f820112156104d15780516001600160401b0381116103db576040519261054f601f8301601f1916602001856104d6565b818452602082840101116104d15761056d91602080850191016104f9565b90565b908151602081106000146105eb575090601f8151116105ac57602081519101516020821061059c571790565b6000198260200360031b1b161790565b6044604051809263305a27a960e01b8252602060048301526105dd81518092816024860152602086860191016104f9565b601f01601f19168101030190fd5b6001600160401b0381116103db57600554600181811c911680156106f7575b60208210146103bb57601f81116106c1575b50602092601f821160011461065c5792819293600092610651575b50508160011b916000199060031b1c19161760055560ff90565b015190503880610637565b601f198216936005600052806000209160005b8681106106a95750836001959610610690575b505050811b0160055560ff90565b015160001960f88460031b161c19169055388080610682565b9192602060018192868501518155019401920161066f565b6005600052601f6020600020910160051c810190601f830160051c015b8181106106eb575061061c565b600081556001016106de565b90607f169061060a565b9081516020811060001461072d575090601f8151116105ac57602081519101516020821061059c571790565b6001600160401b0381116103db57600654600181811c91168015610839575b60208210146103bb57601f8111610803575b50602092601f821160011461079e5792819293600092610793575b50508160011b916000199060031b1c19161760065560ff90565b015190503880610779565b601f198216936006600052806000209160005b8681106107eb57508360019596106107d2575b505050811b0160065560ff90565b015160001960f88460031b161c191690553880806107c4565b919260206001819286850151815501940192016107b1565b6006600052601f6020600020910160051c810190601f830160051c015b81811061082d575061075e565b60008155600101610820565b90607f169061074c56fe608080604052600436101561001357600080fd5b60003560e01c90816301ffc9a7146108fb5750806306fdde0314610853578063095ea7b31461082d57806318160ddd1461080f57806318bf50771461072857806323b872dd1461063b5780632b8c49e314610536578063313ce5671461051a5780633644e515146104f757806370a08231146104bd5780637ecebe001461048357806384b0196e1461038657806395d89b41146102a1578063a9059cbb14610270578063d505accf146101255763dd62ed3e146100cf57600080fd5b34610120576040366003190112610120576100e86109a7565b6100f06109bd565b6001600160a01b039182166000908152600160209081526040808320949093168252928352819020549051908152f35b600080fd5b346101205760e03660031901126101205761013e6109a7565b6101466109bd565b604435906064359260843560ff811681036101205784421161025b5761021c6102259160018060a01b038416968760005260076020526040600020908154916001830190556040519060208201927f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c984528a604084015260018060a01b038916606084015289608084015260a083015260c082015260c081526101ea60e082610a90565b5190206101f5610b61565b906040519161190160f01b83526002830152602282015260c43591604260a4359220610d82565b90929192610e17565b6001600160a01b031684810361024257506102409350610c7d565b005b84906325c0072360e11b60005260045260245260446000fd5b8463313c898160e11b60005260045260246000fd5b346101205760403660031901126101205761029661028c6109a7565b6024359033610ac8565b602060405160018152f35b346101205760003660031901126101205760405160006004546102c3816109d3565b80845290600181169081156103625750600114610303575b6102ff836102eb81850382610a90565b604051918291602083526020830190610966565b0390f35b600460009081527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b939250905b808210610348575090915081016020016102eb6102db565b919260018160209254838588010152019101909291610330565b60ff191660208086019190915291151560051b840190910191506102eb90506102db565b34610120576000366003190112610120576104256103c37f0000000000000000000000000000000000000000000000000000000000000000610ce4565b6103ec7f0000000000000000000000000000000000000000000000000000000000000000610d4b565b6020610433604051926103ff8385610a90565b600084526000368137604051958695600f60f81b875260e08588015260e0870190610966565b908582036040870152610966565b466060850152306080850152600060a085015283810360c085015281808451928381520193019160005b82811061046c57505050500390f35b83518552869550938101939281019260010161045d565b34610120576020366003190112610120576001600160a01b036104a46109a7565b1660005260076020526020604060002054604051908152f35b34610120576020366003190112610120576001600160a01b036104de6109a7565b1660005260006020526020604060002054604051908152f35b34610120576000366003190112610120576020610512610b61565b604051908152f35b3461012057600036600319011261012057602060405160128152f35b346101205760403660031901126101205761054f6109a7565b602435906027602160991b0119330161062b576001600160a01b0316908115610615576000918083528260205260408320548281106105fa57829082855284602052036040842055816002540360025582817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051868152a36040519182527fb90795a66650155983e242cac3e1ac1a4dc26f8ed2987f3ce416a34e00111fd460203393a380f35b63391434e360e21b8452600491909152602452604452606490fd5b634b637e8f60e11b600052600060045260246000fd5b6282b42960e81b60005260046000fd5b34610120576060366003190112610120576106546109a7565b61065c6109bd565b6001600160a01b038216600081815260016020818152604080842033855290915290912054919360443593929091810161069c575b506102969350610ac8565b83811061070b5784156106f55733156106df57610296946000526001602052604060002060018060a01b0333166000526020528360406000209103905584610691565b634a1406b160e11b600052600060045260246000fd5b63e602df0560e01b600052600060045260246000fd5b8390637dc7a0d960e11b6000523360045260245260445260646000fd5b34610120576040366003190112610120576107416109a7565b602435906027602160991b0119330161062b576001600160a01b03169081156107f9576002548181018091116107e357600255600091808352826020526040832082815401905580837fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051868152a36040519182527fde22baff038e3a3e08407cbdf617deed74e869a7ba517df611e33131c6e6ea0460203393a380f35b634e487b7160e01b600052601160045260246000fd5b63ec442f0560e01b600052600060045260246000fd5b34610120576000366003190112610120576020600254604051908152f35b34610120576040366003190112610120576102966108496109a7565b6024359033610c7d565b34610120576000366003190112610120576040516000600354610875816109d3565b8084529060018116908115610362575060011461089c576102ff836102eb81850382610a90565b600360009081527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b939250905b8082106108e1575090915081016020016102eb6102db565b9192600181602092548385880101520191019092916108c9565b34610120576020366003190112610120576004359063ffffffff60e01b821680920361012057602091630cccc66560e21b8114908115610955575b8115610944575b5015158152f35b6301ffc9a760e01b1490508361093d565b6336372b0760e01b81149150610936565b919082519283825260005b848110610992575050826000602080949584010152601f8019910116010190565b80602080928401015182828601015201610971565b600435906001600160a01b038216820361012057565b602435906001600160a01b038216820361012057565b90600182811c92168015610a03575b60208310146109ed57565b634e487b7160e01b600052602260045260246000fd5b91607f16916109e2565b60009291815491610a1d836109d3565b8083529260018116908115610a735750600114610a3957505050565b60009081526020812093945091925b838310610a59575060209250010190565b600181602092949394548385870101520191019190610a48565b915050602093945060ff929192191683830152151560051b010190565b90601f8019910116810190811067ffffffffffffffff821117610ab257604052565b634e487b7160e01b600052604160045260246000fd5b6001600160a01b0316908115610615576001600160a01b03169182156107f9576000828152806020526040812054828110610b475791604082827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef958760209652828652038282205586815280845220818154019055604051908152a3565b916064928463391434e360e21b8452600452602452604452fd5b307f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03161480610c54575b15610bbc577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a08152610c4e60c082610a90565b51902090565b507f00000000000000000000000000000000000000000000000000000000000000004614610b93565b6001600160a01b03169081156106f5576001600160a01b03169182156106df5760207f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925918360005260018252604060002085600052825280604060002055604051908152a3565b60ff8114610d2e5760ff811690601f8211610d1d576040805192610d088285610a90565b6020808552840191601f190136833783525290565b632cd44ac360e21b60005260046000fd5b50604051610d4881610d41816005610a0d565b0382610a90565b90565b60ff8114610d6f5760ff811690601f8211610d1d576040805192610d088285610a90565b50604051610d4881610d41816006610a0d565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411610e0b579160209360809260ff60009560405194855216868401526040830152606082015282805260015afa15610dff576000516001600160a01b03811615610df35790600090600090565b50600090600190600090565b6040513d6000823e3d90fd5b50505060009160039190565b9190916004811015610e895780610e2d57509050565b600060018203610e485763f645eedf60e01b60005260046000fd5b5060028103610e66578263fce698f760e01b60005260045260246000fd5b9091600360009214610e76575050565b6335e2f38360e21b825260045260249150fd5b634e487b7160e01b600052602160045260246000fdfea164736f6c634300081c000aa164736f6c634300081c000a
Deployed Bytecode
0x608080604052600436101561001357600080fd5b60003560e01c9081631f612efc146101f95750806384b0196e146100fc5763ce3220f61461004057600080fd5b346100f75760203660031901126100f7576004356001600160a01b038116908190036100f75760005260026020526040600020805461008160018301610801565b9161008e60028201610801565b6003820154916100e360056004830154920154926100d5604051978760ff8a99161515895260018060a01b039060081c16602089015260e0604089015260e0880190610764565b908682036060880152610764565b92608085015260a084015260c08301520390f35b600080fd5b346100f75760003660031901126100f75761019b6101397f5375706572636861696e20546f6b656e20466163746f72790000000000000018610b79565b6101627f3100000000000000000000000000000000000000000000000000000000000001610c7b565b60206101a96040519261017583856107df565b600084526000368137604051958695600f60f81b875260e08588015260e0870190610764565b908582036040870152610764565b466060850152306080850152600060a085015283810360c085015281808451928381520193019160005b8281106101e257505050500390f35b8351855286955093810193928101926001016101d3565b346100f75760803660031901126100f7576004359067ffffffffffffffff82116100f757816004019160e060031982360301126100f75760603660231901126100f757602082016020815283358015158091036100f75760408401526024820180356001600160a01b038116908190036100f7576060850152604483019261029661028485886108a5565b60e060808901526101208801916108d7565b6102ba60648301916102a8838a6108a5565b898303603f190160a08b0152906108d7565b936084830135968760c08201526102f18160c460a4870135968760e08401520135978861010083015203601f1981018352826107df565b5190206102fd886108f8565b15610666575b61030c84610905565b610316878a610919565b90610321858c610919565b919092604051946116f0948587019487861067ffffffffffffffff871117610588576103728b95608095610380958b9a610d368c396001600160a01b0316895260a060208a018190528901916108d7565b9186830360408801526108d7565b928c6060820152015203906000f5801561065a576001600160a01b03166000818152600260205260409020909590936103b8896108f8565b85549015159160ff90610100600160a81b03906103d490610905565b60081b169216906affffffffffffffffffffff60a81b16171784556103fd600185019189610919565b9067ffffffffffffffff82116105885761041783546107a5565b601f8111610612575b50600090601f83116001146105a95761045e949392916000918361059e575b50508160011b916000199060031b1c19161790555b6002840197610919565b95909667ffffffffffffffff87116105885761047a81546107a5565b97601f8911610540575b60209850600090601f89116001146104da5797809160059798996000926104cf575b50508160011b916000199060031b1c19161790555b600383015560048201550155604051908152f35b013590508a806104a6565b82825289822091601f198a16815b818110610529575091600193918b60059a9b9c941061050f575b505050811b0190556104bb565b0135600019600384901b60f8161c191690558a8080610502565b91938c6001819287870135815501950192016104e8565b816000526020600020601f890160051c81019960208a1061057e575b601f0160051c01985b8981106105725750610484565b60008155600101610565565b909950899061055c565b634e487b7160e01b600052604160045260246000fd5b013590508b8061043f565b8382526020822091601f198416815b8181106105fa575091600193918561045e98979694106105e0575b505050811b019055610454565b0135600019600384901b60f8161c191690558b80806105d3565b919360206001819287870135815501950192016105b8565b836000526020600020601f840160051c81019160208510610650575b601f0160051c01905b8181106106445750610420565b60008155600101610637565b909150819061062e565b6040513d6000823e3d90fd5b604261067185610905565b60405160208101917fa0131f477a44f40384a859fe801970f4e59589f3a85d7798caa2a6b2917b2284835260018060a01b03166040820152836060820152606081526106be6080826107df565b5190206106c961094c565b906040519161190160f01b835260028301526022820152206024359060ff821682036100f75761070d91610704916064359160443591610a68565b90929192610af1565b6001600160a01b0361071e86610905565b6001600160a01b03909216911681036107375750610303565b61074085610905565b63713e3f0d60e01b60009081526004929092526001600160a01b0316602452604490fd5b919082519283825260005b848110610790575050826000602080949584010152601f8019910116010190565b8060208092840101518282860101520161076f565b90600182811c921680156107d5575b60208310146107bf57565b634e487b7160e01b600052602260045260246000fd5b91607f16916107b4565b90601f8019910116810190811067ffffffffffffffff82111761058857604052565b9060405191826000825492610815846107a5565b8084529360018116908115610883575060011461083c575b5061083a925003836107df565b565b90506000929192526020600020906000915b81831061086757505090602061083a928201013861082d565b602091935080600191548385890101520191019091849261084e565b90506020925061083a94915060ff191682840152151560051b8201013861082d565b9035601e19823603018112156100f757016020813591019167ffffffffffffffff82116100f75781360383136100f757565b908060209392818452848401376000828201840152601f01601f1916010190565b3580151581036100f75790565b356001600160a01b03811681036100f75790565b903590601e19813603018212156100f7570180359067ffffffffffffffff82116100f7576020019181360383136100f757565b307f00000000000000000000000042427951078aefbd6adece890d8aaeb1429b42426001600160a01b03161480610a3f575b156109a7577ffd0a8599fe4dfb403242213ddc8b91317503c83f059f714471f726f037a445b190565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f61f999383b578c84b111fc8d1e70b05640a0df9193d1299be1b1f4ecddc5c06260408201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260a08152610a3960c0826107df565b51902090565b507f00000000000000000000000000000000000000000000000000000000000001e0461461097e565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411610ae5579160209360809260ff60009560405194855216868401526040830152606082015282805260015afa1561065a576000516001600160a01b03811615610ad95790600090600090565b50600090600190600090565b50505060009160039190565b9190916004811015610b635780610b0757509050565b600060018203610b225763f645eedf60e01b60005260046000fd5b5060028103610b40578263fce698f760e01b60005260045260246000fd5b9091600360009214610b50575050565b6335e2f38360e21b825260045260249150fd5b634e487b7160e01b600052602160045260246000fd5b60ff8114610bc35760ff811690601f8211610bb2576040805192610b9d82856107df565b6020808552840191601f190136833783525290565b632cd44ac360e21b60005260046000fd5b5060405160008160005491610bd7836107a5565b8083529260018116908115610c5c5750600114610bfe575b610bfb925003826107df565b90565b50600080805290917f290decd9548b62a8d60345a988386fc84ba6bc95484008f6362f93160ef3e5635b818310610c40575050906020610bfb92820101610bef565b6020919350806001915483858801015201910190918392610c28565b60209250610bfb94915060ff191682840152151560051b820101610bef565b60ff8114610c9f5760ff811690601f8211610bb2576040805192610b9d82856107df565b50604051600154816000610cb2836107a5565b8083529260018116908115610c5c5750600114610cd557610bfb925003826107df565b506001600090815290917fb10e2d527612073b26eecdfd717e6a320cf44b4afac2b0732d9fcbe2b7fa0cf65b818310610d19575050906020610bfb92820101610bef565b6020919350806001915483858801015201910190918392610d0156fe61016080604052346104d1576116f0803803809161001d82856104d6565b833981019060a0818303126104d15780516001600160a01b03811691908290036104d15760208101516001600160401b0381116104d1578361006091830161051c565b604082015190936001600160401b0382116104d15761008091830161051c565b92608060608301519201519060409485519161009c87846104d6565b60018352603160f81b6020840190815281519092906001600160401b0381116103db57600354600181811c911680156104c7575b60208210146103bb57601f8111610462575b50806020601f82116001146103fc576000916103f1575b508160011b916000199060031b1c1916176003555b8051906001600160401b0382116103db5760045490600182811c921680156103d1575b60208310146103bb5781601f84931161034b575b50602090601f83116001146102e3576000926102d8575b50508160011b916000199060031b1c1916176004555b61017b81610570565b6101205261018883610701565b6101405260208151910120918260e05251902080610100524660a05285519060208201927f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f84528783015260608201524660808201523060a082015260a081526101f360c0826104d6565b5190206080523060c0524614610254575b8251610eac9081610844823960805181610b9a015260a05181610c57015260c05181610b64015260e05181610be901526101005181610c0f0152610120518161039f015261014051816103c80152f35b81156102c2576002548181018091116102ac576002557fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60206000928484528382528584208181540190558551908152a33880610204565b634e487b7160e01b600052601160045260246000fd5b63ec442f0560e01b600052600060045260246000fd5b01519050388061015c565b600460009081528281209350601f198516905b818110610333575090846001959493921061031a575b505050811b01600455610172565b015160001960f88460031b161c1916905538808061030c565b929360206001819287860151815501950193016102f6565b60046000529091507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b601f840160051c810191602085106103b1575b90601f859493920160051c01905b8181106103a25750610145565b60008155849350600101610395565b9091508190610387565b634e487b7160e01b600052602260045260246000fd5b91607f1691610131565b634e487b7160e01b600052604160045260246000fd5b9050830151386100f9565b600360009081528181209250601f198416905b81811061044a57509083600194939210610431575b5050811b0160035561010e565b85015160001960f88460031b161c191690553880610424565b9192602060018192868a01518155019401920161040f565b60036000527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b601f830160051c810191602084106104bd575b601f0160051c01905b8181106104b157506100e2565b600081556001016104a4565b909150819061049b565b90607f16906100d0565b600080fd5b601f909101601f19168101906001600160401b038211908210176103db57604052565b60005b83811061050c5750506000910152565b81810151838201526020016104fc565b81601f820112156104d15780516001600160401b0381116103db576040519261054f601f8301601f1916602001856104d6565b818452602082840101116104d15761056d91602080850191016104f9565b90565b908151602081106000146105eb575090601f8151116105ac57602081519101516020821061059c571790565b6000198260200360031b1b161790565b6044604051809263305a27a960e01b8252602060048301526105dd81518092816024860152602086860191016104f9565b601f01601f19168101030190fd5b6001600160401b0381116103db57600554600181811c911680156106f7575b60208210146103bb57601f81116106c1575b50602092601f821160011461065c5792819293600092610651575b50508160011b916000199060031b1c19161760055560ff90565b015190503880610637565b601f198216936005600052806000209160005b8681106106a95750836001959610610690575b505050811b0160055560ff90565b015160001960f88460031b161c19169055388080610682565b9192602060018192868501518155019401920161066f565b6005600052601f6020600020910160051c810190601f830160051c015b8181106106eb575061061c565b600081556001016106de565b90607f169061060a565b9081516020811060001461072d575090601f8151116105ac57602081519101516020821061059c571790565b6001600160401b0381116103db57600654600181811c91168015610839575b60208210146103bb57601f8111610803575b50602092601f821160011461079e5792819293600092610793575b50508160011b916000199060031b1c19161760065560ff90565b015190503880610779565b601f198216936006600052806000209160005b8681106107eb57508360019596106107d2575b505050811b0160065560ff90565b015160001960f88460031b161c191690553880806107c4565b919260206001819286850151815501940192016107b1565b6006600052601f6020600020910160051c810190601f830160051c015b81811061082d575061075e565b60008155600101610820565b90607f169061074c56fe608080604052600436101561001357600080fd5b60003560e01c90816301ffc9a7146108fb5750806306fdde0314610853578063095ea7b31461082d57806318160ddd1461080f57806318bf50771461072857806323b872dd1461063b5780632b8c49e314610536578063313ce5671461051a5780633644e515146104f757806370a08231146104bd5780637ecebe001461048357806384b0196e1461038657806395d89b41146102a1578063a9059cbb14610270578063d505accf146101255763dd62ed3e146100cf57600080fd5b34610120576040366003190112610120576100e86109a7565b6100f06109bd565b6001600160a01b039182166000908152600160209081526040808320949093168252928352819020549051908152f35b600080fd5b346101205760e03660031901126101205761013e6109a7565b6101466109bd565b604435906064359260843560ff811681036101205784421161025b5761021c6102259160018060a01b038416968760005260076020526040600020908154916001830190556040519060208201927f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c984528a604084015260018060a01b038916606084015289608084015260a083015260c082015260c081526101ea60e082610a90565b5190206101f5610b61565b906040519161190160f01b83526002830152602282015260c43591604260a4359220610d82565b90929192610e17565b6001600160a01b031684810361024257506102409350610c7d565b005b84906325c0072360e11b60005260045260245260446000fd5b8463313c898160e11b60005260045260246000fd5b346101205760403660031901126101205761029661028c6109a7565b6024359033610ac8565b602060405160018152f35b346101205760003660031901126101205760405160006004546102c3816109d3565b80845290600181169081156103625750600114610303575b6102ff836102eb81850382610a90565b604051918291602083526020830190610966565b0390f35b600460009081527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b939250905b808210610348575090915081016020016102eb6102db565b919260018160209254838588010152019101909291610330565b60ff191660208086019190915291151560051b840190910191506102eb90506102db565b34610120576000366003190112610120576104256103c37f0000000000000000000000000000000000000000000000000000000000000000610ce4565b6103ec7f0000000000000000000000000000000000000000000000000000000000000000610d4b565b6020610433604051926103ff8385610a90565b600084526000368137604051958695600f60f81b875260e08588015260e0870190610966565b908582036040870152610966565b466060850152306080850152600060a085015283810360c085015281808451928381520193019160005b82811061046c57505050500390f35b83518552869550938101939281019260010161045d565b34610120576020366003190112610120576001600160a01b036104a46109a7565b1660005260076020526020604060002054604051908152f35b34610120576020366003190112610120576001600160a01b036104de6109a7565b1660005260006020526020604060002054604051908152f35b34610120576000366003190112610120576020610512610b61565b604051908152f35b3461012057600036600319011261012057602060405160128152f35b346101205760403660031901126101205761054f6109a7565b602435906027602160991b0119330161062b576001600160a01b0316908115610615576000918083528260205260408320548281106105fa57829082855284602052036040842055816002540360025582817fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051868152a36040519182527fb90795a66650155983e242cac3e1ac1a4dc26f8ed2987f3ce416a34e00111fd460203393a380f35b63391434e360e21b8452600491909152602452604452606490fd5b634b637e8f60e11b600052600060045260246000fd5b6282b42960e81b60005260046000fd5b34610120576060366003190112610120576106546109a7565b61065c6109bd565b6001600160a01b038216600081815260016020818152604080842033855290915290912054919360443593929091810161069c575b506102969350610ac8565b83811061070b5784156106f55733156106df57610296946000526001602052604060002060018060a01b0333166000526020528360406000209103905584610691565b634a1406b160e11b600052600060045260246000fd5b63e602df0560e01b600052600060045260246000fd5b8390637dc7a0d960e11b6000523360045260245260445260646000fd5b34610120576040366003190112610120576107416109a7565b602435906027602160991b0119330161062b576001600160a01b03169081156107f9576002548181018091116107e357600255600091808352826020526040832082815401905580837fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6020604051868152a36040519182527fde22baff038e3a3e08407cbdf617deed74e869a7ba517df611e33131c6e6ea0460203393a380f35b634e487b7160e01b600052601160045260246000fd5b63ec442f0560e01b600052600060045260246000fd5b34610120576000366003190112610120576020600254604051908152f35b34610120576040366003190112610120576102966108496109a7565b6024359033610c7d565b34610120576000366003190112610120576040516000600354610875816109d3565b8084529060018116908115610362575060011461089c576102ff836102eb81850382610a90565b600360009081527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b939250905b8082106108e1575090915081016020016102eb6102db565b9192600181602092548385880101520191019092916108c9565b34610120576020366003190112610120576004359063ffffffff60e01b821680920361012057602091630cccc66560e21b8114908115610955575b8115610944575b5015158152f35b6301ffc9a760e01b1490508361093d565b6336372b0760e01b81149150610936565b919082519283825260005b848110610992575050826000602080949584010152601f8019910116010190565b80602080928401015182828601015201610971565b600435906001600160a01b038216820361012057565b602435906001600160a01b038216820361012057565b90600182811c92168015610a03575b60208310146109ed57565b634e487b7160e01b600052602260045260246000fd5b91607f16916109e2565b60009291815491610a1d836109d3565b8083529260018116908115610a735750600114610a3957505050565b60009081526020812093945091925b838310610a59575060209250010190565b600181602092949394548385870101520191019190610a48565b915050602093945060ff929192191683830152151560051b010190565b90601f8019910116810190811067ffffffffffffffff821117610ab257604052565b634e487b7160e01b600052604160045260246000fd5b6001600160a01b0316908115610615576001600160a01b03169182156107f9576000828152806020526040812054828110610b475791604082827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef958760209652828652038282205586815280845220818154019055604051908152a3565b916064928463391434e360e21b8452600452602452604452fd5b307f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03161480610c54575b15610bbc577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a08152610c4e60c082610a90565b51902090565b507f00000000000000000000000000000000000000000000000000000000000000004614610b93565b6001600160a01b03169081156106f5576001600160a01b03169182156106df5760207f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925918360005260018252604060002085600052825280604060002055604051908152a3565b60ff8114610d2e5760ff811690601f8211610d1d576040805192610d088285610a90565b6020808552840191601f190136833783525290565b632cd44ac360e21b60005260046000fd5b50604051610d4881610d41816005610a0d565b0382610a90565b90565b60ff8114610d6f5760ff811690601f8211610d1d576040805192610d088285610a90565b50604051610d4881610d41816006610a0d565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411610e0b579160209360809260ff60009560405194855216868401526040830152606082015282805260015afa15610dff576000516001600160a01b03811615610df35790600090600090565b50600090600190600090565b6040513d6000823e3d90fd5b50505060009160039190565b9190916004811015610e895780610e2d57509050565b600060018203610e485763f645eedf60e01b60005260046000fd5b5060028103610e66578263fce698f760e01b60005260045260246000fd5b9091600360009214610e76575050565b6335e2f38360e21b825260045260249150fd5b634e487b7160e01b600052602160045260246000fdfea164736f6c634300081c000aa164736f6c634300081c000a
Deployed Bytecode Sourcemap
474:1950:2:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;474:1950:2;;;;;;-1:-1:-1;;;;;474:1950:2;;;;;;;;;;1002:81;474:1950;;;;;;;1002:81;;;;;:::i;:::-;;;;;;;:::i;:::-;;;;474:1950;1002:81;474:1950;1002:81;474:1950;1002:81;;474:1950;1002:81;;474:1950;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;474:1950:2;;;;;6099:41:18;:5;:41;:::i;:::-;6554:47;:8;:47;:::i;:::-;474:1950:2;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;:::i;:::-;5590:13:18;474:1950:2;;;;5625:4:18;474:1950:2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;474:1950:2;;;;;;;;6584:16:18;474:1950:2;;;;;;;;;-1:-1:-1;;474:1950:2;;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;474:1950:2;;;;;1356:25;;474:1950;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;;;;474:1950:2;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;:::i;:::-;;;;;;;;;;:::i;:::-;;;;-1:-1:-1;;474:1950:2;;;;;;;:::i;:::-;;;;;;;;;;;;1356:25;474:1950;;;;;;;;;;;;;;;;;;;;1356:25;;;;;;;;;:::i;:::-;474:1950;1346:36;;1398:33;;;:::i;:::-;1397:34;1393:655;;474:1950;2161:21;;;:::i;:::-;2200:18;;;;:::i;:::-;2236:20;;;;;:::i;:::-;474:1950;;;;;2095:255;;;;;;;;;;474:1950;2095:255;;;;;565:55;2095:255;;474:1950;2095:255;565:55;2095:255;;;;;;-1:-1:-1;;;;;474:1950:2;;;;;565:55;;;;;;;;;:::i;:::-;;;;;474:1950;565:55;;;;:::i;:::-;;;474:1950;565:55;;474:1950;565:55;474:1950;2095:255;;474:1950;2095:255;;;;;-1:-1:-1;;;;;474:1950:2;;;;;2370:14;474:1950;;;;;;;;;565:55;;;:::i;:::-;;;474:1950;;;;565:55;;-1:-1:-1;;;;;565:55:2;;;;:::i;:::-;;;;;;;;;;;;;;;;474:1950;565:55;;;;;:::i;:::-;;474:1950;565:55;;;;;;;;:::i;:::-;;;;;;474:1950;565:55;474:1950;565:55;;;;;;;;;;;;;474:1950;;565:55;;;;;;;474:1950;565:55;;;;;;;;;;;;;;2370:14;565:55;;;;:::i;:::-;;;;474:1950;565:55;;;;;;;;:::i;:::-;;;;;;;;474:1950;565:55;;474:1950;565:55;;;;;;;;;;;;;;;474:1950;565:55;;;;;;;474:1950;565:55;;;;;;;;;;;;;;;;;;474:1950;565:55;;;;;474:1950;;;;;;565:55;;;;-1:-1:-1;565:55:2;;;;;474:1950;;;;;;;-1:-1:-1;;565:55:2;;474:1950;565:55;;;;;;;;474:1950;565:55;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;565:55:2;;;;;;;;;;;;;;;;;;;;474:1950;565:55;;;;;;;;;;;;;;;;474:1950;;;;;;565:55;;;;;;;;474:1950;565:55;;;;;;;;;;;;;;;;;;;;;474:1950;565:55;;474:1950;565:55;;;;;;-1:-1:-1;565:55:2;;;;;474:1950;;;;;;;;;;;565:55;;;;-1:-1:-1;565:55:2;;;;;474:1950;;;;;;;-1:-1:-1;;565:55:2;;474:1950;565:55;;;;;;;;474:1950;565:55;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;565:55:2;;;;;;;;;;;;;;;;;;;474:1950;;565:55;;;;;;;;;;;;;;;;474:1950;;;;;;565:55;;;;;;;;474:1950;565:55;;;;;;;;;;;;;;;;;;;;;474:1950;565:55;;474:1950;565:55;;;;;;-1:-1:-1;565:55:2;;;;2095:255;474:1950;;565:55;474:1950;565:55;;;;;1393:655;3445:249:19;1506:21:2;;;:::i;:::-;474:1950;;;1478:63;;474:1950;565:55;474:1950;;;;;;;;;565:55;;474:1950;565:55;474:1950;565:55;;474:1950;;1478:63;;;474:1950;1478:63;;:::i;:::-;474:1950;1468:74;;5053:20:18;;:::i;:::-;3445:249:19;474:1950:2;3445:249:19;;-1:-1:-1;;;3445:249:19;;;;;;;;;;;474:1950:2;565:55;474:1950;;;;565:55;;;;7105:8:17;565:55:2;7051:25:17;565:55:2;474:1950;565:55;;474:1950;565:55;7051:25:17;;:::i;:::-;7105:8;;;;;:::i;:::-;-1:-1:-1;;;;;1912:21:2;;;:::i;:::-;-1:-1:-1;;;;;474:1950:2;;;;;1902:31;;1898:140;;1393:655;;;1898:140;2001:21;;;:::i;:::-;-1:-1:-1;;;474:1950:2;1960:63;;;474:1950;;;;;-1:-1:-1;;;;;474:1950:2;;;;;1960:63;474:1950;;;;;;;;;-1:-1:-1;474:1950:2;;;;;;;;;-1:-1:-1;474:1950:2;;;;;;;;;1356:25;;474:1950;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;;;;;;;;;;1356:25;;474:1950;;;;;;;;;;;;;;;;:::o;:::-;;;;;;-1:-1:-1;474:1950:2;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;:::o;:::-;;;-1:-1:-1;474:1950:2;;;;;-1:-1:-1;474:1950:2;;-1:-1:-1;474:1950:2;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;:::-;;;;;;;;;;;;;-1:-1:-1;474:1950:2;;;;;;;;-1:-1:-1;;474:1950:2;;;;:::o;:::-;;;;;;;;;;:::o;565:55::-;;-1:-1:-1;;;;;474:1950:2;;;;;;565:55;:::o;:::-;;;474:1950;;;565:55;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::o;3845:262:18:-;3929:4;3938:11;-1:-1:-1;;;;;474:1950:2;3921:28:18;;:63;;3845:262;3917:184;;;4007:22;4000:29;:::o;3917:184::-;474:1950:2;;4204:80:18;;;474:1950:2;2079:95:18;474:1950:2;;4226:11:18;474:1950:2;2079:95:18;;474:1950:2;4239:14:18;2079:95;;;474:1950:2;4255:13:18;2079:95;;;474:1950:2;3929:4:18;2079:95;;;474:1950:2;2079:95:18;4204:80;;;;;;:::i;:::-;474:1950:2;4194:91:18;;4060:30;:::o;3921:63::-;3970:14;;3953:13;:31;3921:63;;5203:1551:17;;;6283:66;6270:79;;6266:164;;474:1950:2;;;;;;-1:-1:-1;474:1950:2;;;;;;;;;;;;;;;;;;;6541:24:17;;;;;;;;;-1:-1:-1;6541:24:17;-1:-1:-1;;;;;474:1950:2;;6579:20:17;6575:113;;6698:49;-1:-1:-1;6698:49:17;-1:-1:-1;5203:1551:17;:::o;6575:113::-;6615:62;-1:-1:-1;6615:62:17;6541:24;6615:62;-1:-1:-1;6615:62:17;:::o;6266:164::-;6365:54;;;6381:1;6365:54;6385:30;6365:54;;:::o;7280:532::-;;;;474:1950:2;;;;;;7366:29:17;;;7411:7;;;:::o;7362:444::-;7375:20;474:1950:2;7462:38:17;;474:1950:2;;7523:23:17;;;7375:20;7523:23;474:1950:2;7375:20:17;7523:23;7458:348;-1:-1:-1;7576:35:17;7567:44;;7576:35;;7634:46;;;;7375:20;7634:46;474:1950:2;;;7375:20:17;7634:46;7563:243;474:1950:2;;7710:30:17;7375:20;7701:39;;7697:109;;7563:243;;7280:532::o;7697:109::-;-1:-1:-1;;;7763:32:17;;474:1950:2;;;;-1:-1:-1;7763:32:17;474:1950:2;;;;7375:20:17;474:1950:2;;;;;7375:20:17;474:1950:2;3358:267:14;1390:66;3481:46;;1390:66;;;2625:40;;2679:11;2688:2;2679:11;;2675:69;;474:1950:2;;;;;;;;:::i;:::-;2311:2:14;474:1950:2;;;;;;-1:-1:-1;;474:1950:2;;;;2324:106:14;;;3543:22;:::o;2675:69::-;2713:20;;;474:1950:2;2713:20:14;;474:1950:2;2713:20:14;3477:142;474:1950:2;;;;1390:66:14;474:1950:2;1390:66:14;;;;;:::i;:::-;474:1950:2;;;;1390:66:14;;;;;;;;474:1950:2;1390:66:14;474:1950:2;;;1390:66:14;;;;;;;:::i;:::-;3596:12;:::o;1390:66::-;-1:-1:-1;474:1950:2;;;;;;;1390:66:14;;;;;;;;;474:1950:2;1390:66:14;;;;;;;;474:1950:2;1390:66:14;;;;;;;;;;;;;;;;;;;;;;;474:1950:2;;;1390:66:14;474:1950:2;;;;;1390:66:14;474:1950:2;;;1390:66:14;;;;;;;;;;3358:267;1390:66;3481:46;;1390:66;;;2625:40;;2679:11;2688:2;2679:11;;2675:69;;474:1950:2;;;;;;;;:::i;3477:142:14:-;-1:-1:-1;474:1950:2;;6584:16:18;1390:66:14;474:1950:2;-1:-1:-1;1390:66:14;;;:::i;:::-;474:1950:2;;;;6584:16:18;1390:66:14;;;6584:16:18;;;;474:1950:2;1390:66:14;474:1950:2;;;1390:66:14;;;;;;:::i;:::-;-1:-1:-1;6584:16:18;-1:-1:-1;474:1950:2;;;;;;1390:66:14;;;;;;;;;474:1950:2;1390:66:14;;;;;;;;474:1950:2;1390:66:14;;;;6584:16:18;1390:66:14;;;;;;;;;;;;;;;;
Swarm Source
none://164736f6c634300081c000a
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.