Overview
ETH Balance
0 ETH
ETH Value
$0.00More Info
Private Name Tags
ContractCreator
Loading...
Loading
Contract Name:
SequencerFeeVault
Compiler Version
v0.8.15+commit.e14f2714
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { ISemver } from "src/universal/ISemver.sol"; import { FeeVault } from "src/universal/FeeVault.sol"; /// @custom:proxied /// @custom:predeploy 0x4200000000000000000000000000000000000011 /// @title SequencerFeeVault /// @notice The SequencerFeeVault is the contract that holds any fees paid to the Sequencer during /// transaction processing and block production. contract SequencerFeeVault is FeeVault, ISemver { /// @custom:semver 1.4.1 string public constant version = "1.4.1"; /// @notice Constructs the SequencerFeeVault contract. /// @param _recipient Wallet that will receive the fees. /// @param _minWithdrawalAmount Minimum balance for withdrawals. /// @param _withdrawalNetwork Network which the recipient will receive fees on. constructor( address _recipient, uint256 _minWithdrawalAmount, WithdrawalNetwork _withdrawalNetwork ) FeeVault(_recipient, _minWithdrawalAmount, _withdrawalNetwork) { } /// @custom:legacy /// @notice Legacy getter for the recipient address. /// @return The recipient address. function l1FeeWallet() public view returns (address) { return RECIPIENT; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title ISemver /// @notice ISemver is a simple contract for ensuring that contracts are /// versioned using semantic versioning. interface ISemver { /// @notice Getter for the semantic version of the contract. This is not /// meant to be used onchain but instead meant to be used by offchain /// tooling. /// @return Semver contract version as a string. function version() external view returns (string memory); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { L2StandardBridge } from "src/L2/L2StandardBridge.sol"; import { Predeploys } from "src/libraries/Predeploys.sol"; /// @title FeeVault /// @notice The FeeVault contract contains the basic logic for the various different vault contracts /// used to hold fee revenue generated by the L2 system. abstract contract FeeVault { /// @notice Enum representing where the FeeVault withdraws funds to. /// @custom:value L1 FeeVault withdraws funds to L1. /// @custom:value L2 FeeVault withdraws funds to L2. enum WithdrawalNetwork { L1, L2 } /// @notice Minimum balance before a withdrawal can be triggered. uint256 public immutable MIN_WITHDRAWAL_AMOUNT; /// @notice Wallet that will receive the fees. address public immutable RECIPIENT; /// @notice Network which the RECIPIENT will receive fees on. WithdrawalNetwork public immutable WITHDRAWAL_NETWORK; /// @notice The minimum gas limit for the FeeVault withdrawal transaction. uint32 internal constant WITHDRAWAL_MIN_GAS = 35_000; /// @notice Total amount of wei processed by the contract. uint256 public totalProcessed; /// @notice Emitted each time a withdrawal occurs. This event will be deprecated /// in favor of the Withdrawal event containing the WithdrawalNetwork parameter. /// @param value Amount that was withdrawn (in wei). /// @param to Address that the funds were sent to. /// @param from Address that triggered the withdrawal. event Withdrawal(uint256 value, address to, address from); /// @notice Emitted each time a withdrawal occurs. /// @param value Amount that was withdrawn (in wei). /// @param to Address that the funds were sent to. /// @param from Address that triggered the withdrawal. /// @param withdrawalNetwork Network which the to address will receive funds on. event Withdrawal(uint256 value, address to, address from, WithdrawalNetwork withdrawalNetwork); /// @param _recipient Wallet that will receive the fees. /// @param _minWithdrawalAmount Minimum balance for withdrawals. /// @param _withdrawalNetwork Network which the recipient will receive fees on. constructor(address _recipient, uint256 _minWithdrawalAmount, WithdrawalNetwork _withdrawalNetwork) { RECIPIENT = _recipient; MIN_WITHDRAWAL_AMOUNT = _minWithdrawalAmount; WITHDRAWAL_NETWORK = _withdrawalNetwork; } /// @notice Allow the contract to receive ETH. receive() external payable { } /// @notice Triggers a withdrawal of funds to the fee wallet on L1 or L2. function withdraw() external { require( address(this).balance >= MIN_WITHDRAWAL_AMOUNT, "FeeVault: withdrawal amount must be greater than minimum withdrawal amount" ); uint256 value = address(this).balance; totalProcessed += value; emit Withdrawal(value, RECIPIENT, msg.sender); emit Withdrawal(value, RECIPIENT, msg.sender, WITHDRAWAL_NETWORK); if (WITHDRAWAL_NETWORK == WithdrawalNetwork.L2) { (bool success,) = RECIPIENT.call{ value: value }(hex""); require(success, "FeeVault: failed to send ETH to L2 fee recipient"); } else { L2StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE)).bridgeETHTo{ value: value }( RECIPIENT, WITHDRAWAL_MIN_GAS, bytes("") ); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Predeploys } from "src/libraries/Predeploys.sol"; import { StandardBridge } from "src/universal/StandardBridge.sol"; import { ISemver } from "src/universal/ISemver.sol"; import { OptimismMintableERC20 } from "src/universal/OptimismMintableERC20.sol"; import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol"; import { Constants } from "src/libraries/Constants.sol"; /// @custom:proxied /// @custom:predeploy 0x4200000000000000000000000000000000000010 /// @title L2StandardBridge /// @notice The L2StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and /// L2. In the case that an ERC20 token is native to L2, it will be escrowed within this /// contract. If the ERC20 token is native to L1, it will be burnt. /// NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples /// of some token types that may not be properly supported by this contract include, but are /// not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists. contract L2StandardBridge is StandardBridge, ISemver { /// @custom:legacy /// @notice Emitted whenever a withdrawal from L2 to L1 is initiated. /// @param l1Token Address of the token on L1. /// @param l2Token Address of the corresponding token on L2. /// @param from Address of the withdrawer. /// @param to Address of the recipient on L1. /// @param amount Amount of the ERC20 withdrawn. /// @param extraData Extra data attached to the withdrawal. event WithdrawalInitiated( address indexed l1Token, address indexed l2Token, address indexed from, address to, uint256 amount, bytes extraData ); /// @custom:legacy /// @notice Emitted whenever an ERC20 deposit is finalized. /// @param l1Token Address of the token on L1. /// @param l2Token Address of the corresponding token on L2. /// @param from Address of the depositor. /// @param to Address of the recipient on L2. /// @param amount Amount of the ERC20 deposited. /// @param extraData Extra data attached to the deposit. event DepositFinalized( address indexed l1Token, address indexed l2Token, address indexed from, address to, uint256 amount, bytes extraData ); /// @custom:semver 1.8.0 string public constant version = "1.8.0"; /// @notice Constructs the L2StandardBridge contract. constructor() StandardBridge() { initialize({ _otherBridge: StandardBridge(payable(address(0))) }); } /// @notice Initializer. /// @param _otherBridge Contract for the corresponding bridge on the other chain. function initialize(StandardBridge _otherBridge) public initializer { __StandardBridge_init({ _messenger: CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER), _otherBridge: _otherBridge }); } /// @notice Allows EOAs to bridge ETH by sending directly to the bridge. receive() external payable override onlyEOA { _initiateWithdrawal( Predeploys.LEGACY_ERC20_ETH, msg.sender, msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, bytes("") ); } /// @custom:legacy /// @notice Initiates a withdrawal from L2 to L1. /// This function only works with OptimismMintableERC20 tokens or ether. Use the /// `bridgeERC20` function to bridge native L2 tokens to L1. /// @param _l2Token Address of the L2 token to withdraw. /// @param _amount Amount of the L2 token to withdraw. /// @param _minGasLimit Minimum gas limit to use for the transaction. /// @param _extraData Extra data attached to the withdrawal. function withdraw( address _l2Token, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) external payable virtual onlyEOA { _initiateWithdrawal(_l2Token, msg.sender, msg.sender, _amount, _minGasLimit, _extraData); } /// @custom:legacy /// @notice Initiates a withdrawal from L2 to L1 to a target account on L1. /// Note that if ETH is sent to a contract on L1 and the call fails, then that ETH will /// be locked in the L1StandardBridge. ETH may be recoverable if the call can be /// successfully replayed by increasing the amount of gas supplied to the call. If the /// call will fail for any amount of gas, then the ETH will be locked permanently. /// This function only works with OptimismMintableERC20 tokens or ether. Use the /// `bridgeERC20To` function to bridge native L2 tokens to L1. /// @param _l2Token Address of the L2 token to withdraw. /// @param _to Recipient account on L1. /// @param _amount Amount of the L2 token to withdraw. /// @param _minGasLimit Minimum gas limit to use for the transaction. /// @param _extraData Extra data attached to the withdrawal. function withdrawTo( address _l2Token, address _to, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) external payable virtual { _initiateWithdrawal(_l2Token, msg.sender, _to, _amount, _minGasLimit, _extraData); } /// @custom:legacy /// @notice Finalizes a deposit from L1 to L2. To finalize a deposit of ether, use address(0) /// and the l1Token and the Legacy ERC20 ether predeploy address as the l2Token. /// @param _l1Token Address of the L1 token to deposit. /// @param _l2Token Address of the corresponding L2 token. /// @param _from Address of the depositor. /// @param _to Address of the recipient. /// @param _amount Amount of the tokens being deposited. /// @param _extraData Extra data attached to the deposit. function finalizeDeposit( address _l1Token, address _l2Token, address _from, address _to, uint256 _amount, bytes calldata _extraData ) external payable virtual { if (_l1Token == address(0) && _l2Token == Predeploys.LEGACY_ERC20_ETH) { finalizeBridgeETH(_from, _to, _amount, _extraData); } else { finalizeBridgeERC20(_l2Token, _l1Token, _from, _to, _amount, _extraData); } } /// @custom:legacy /// @notice Retrieves the access of the corresponding L1 bridge contract. /// @return Address of the corresponding L1 bridge contract. function l1TokenBridge() external view returns (address) { return address(otherBridge); } /// @custom:legacy /// @notice Internal function to initiate a withdrawal from L2 to L1 to a target account on L1. /// @param _l2Token Address of the L2 token to withdraw. /// @param _from Address of the withdrawer. /// @param _to Recipient account on L1. /// @param _amount Amount of the L2 token to withdraw. /// @param _minGasLimit Minimum gas limit to use for the transaction. /// @param _extraData Extra data attached to the withdrawal. function _initiateWithdrawal( address _l2Token, address _from, address _to, uint256 _amount, uint32 _minGasLimit, bytes memory _extraData ) internal { if (_l2Token == Predeploys.LEGACY_ERC20_ETH) { _initiateBridgeETH(_from, _to, _amount, _minGasLimit, _extraData); } else { address l1Token = OptimismMintableERC20(_l2Token).l1Token(); _initiateBridgeERC20(_l2Token, l1Token, _from, _to, _amount, _minGasLimit, _extraData); } } /// @notice Emits the legacy WithdrawalInitiated event followed by the ETHBridgeInitiated event. /// This is necessary for backwards compatibility with the legacy bridge. /// @inheritdoc StandardBridge function _emitETHBridgeInitiated( address _from, address _to, uint256 _amount, bytes memory _extraData ) internal override { emit WithdrawalInitiated(address(0), Predeploys.LEGACY_ERC20_ETH, _from, _to, _amount, _extraData); super._emitETHBridgeInitiated(_from, _to, _amount, _extraData); } /// @notice Emits the legacy DepositFinalized event followed by the ETHBridgeFinalized event. /// This is necessary for backwards compatibility with the legacy bridge. /// @inheritdoc StandardBridge function _emitETHBridgeFinalized( address _from, address _to, uint256 _amount, bytes memory _extraData ) internal override { emit DepositFinalized(address(0), Predeploys.LEGACY_ERC20_ETH, _from, _to, _amount, _extraData); super._emitETHBridgeFinalized(_from, _to, _amount, _extraData); } /// @notice Emits the legacy WithdrawalInitiated event followed by the ERC20BridgeInitiated /// event. This is necessary for backwards compatibility with the legacy bridge. /// @inheritdoc StandardBridge function _emitERC20BridgeInitiated( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes memory _extraData ) internal override { emit WithdrawalInitiated(_remoteToken, _localToken, _from, _to, _amount, _extraData); super._emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData); } /// @notice Emits the legacy DepositFinalized event followed by the ERC20BridgeFinalized event. /// This is necessary for backwards compatibility with the legacy bridge. /// @inheritdoc StandardBridge function _emitERC20BridgeFinalized( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes memory _extraData ) internal override { emit DepositFinalized(_remoteToken, _localToken, _from, _to, _amount, _extraData); super._emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Predeploys /// @notice Contains constant addresses for protocol contracts that are pre-deployed to the L2 system. // This excludes the preinstalls (non-protocol contracts). library Predeploys { /// @notice Number of predeploy-namespace addresses reserved for protocol usage. uint256 internal constant PREDEPLOY_COUNT = 2048; /// @custom:legacy /// @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated /// L2ToL1MessagePasser contract instead. address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000; /// @custom:legacy /// @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger /// or access tx.origin (or msg.sender) in a L1 to L2 transaction instead. /// Not embedded into new OP-Stack chains. address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001; /// @custom:legacy /// @notice Address of the DeployerWhitelist predeploy. No longer active. address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002; /// @notice Address of the canonical WETH9 contract. address internal constant WETH9 = 0x4200000000000000000000000000000000000006; /// @notice Address of the L2CrossDomainMessenger predeploy. address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007; /// @notice Address of the GasPriceOracle predeploy. Includes fee information /// and helpers for computing the L1 portion of the transaction fee. address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F; /// @notice Address of the L2StandardBridge predeploy. address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010; //// @notice Address of the SequencerFeeWallet predeploy. address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011; /// @notice Address of the OptimismMintableERC20Factory predeploy. address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012; /// @custom:legacy /// @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy /// instead, which exposes more information about the L1 state. address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013; /// @notice Address of the L2ERC721Bridge predeploy. address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014; /// @notice Address of the L1Block predeploy. address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015; /// @notice Address of the L2ToL1MessagePasser predeploy. address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016; /// @notice Address of the OptimismMintableERC721Factory predeploy. address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017; /// @notice Address of the ProxyAdmin predeploy. address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018; /// @notice Address of the BaseFeeVault predeploy. address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019; /// @notice Address of the L1FeeVault predeploy. address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A; /// @notice Address of the SchemaRegistry predeploy. address internal constant SCHEMA_REGISTRY = 0x4200000000000000000000000000000000000020; /// @notice Address of the EAS predeploy. address internal constant EAS = 0x4200000000000000000000000000000000000021; /// @notice Address of the GovernanceToken predeploy. address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042; /// @custom:legacy /// @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the /// state trie as of the Bedrock upgrade. Contract has been locked and write functions /// can no longer be accessed. address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000; /// @notice Address of the CrossL2Inbox predeploy. address internal constant CROSS_L2_INBOX = 0x4200000000000000000000000000000000000022; /// @notice Address of the L2ToL2CrossDomainMessenger predeploy. address internal constant L2_TO_L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000023; /// @notice Returns the name of the predeploy at the given address. function getName(address _addr) internal pure returns (string memory out_) { require(isPredeployNamespace(_addr), "Predeploys: address must be a predeploy"); if (_addr == LEGACY_MESSAGE_PASSER) return "LegacyMessagePasser"; if (_addr == L1_MESSAGE_SENDER) return "L1MessageSender"; if (_addr == DEPLOYER_WHITELIST) return "DeployerWhitelist"; if (_addr == WETH9) return "WETH9"; if (_addr == L2_CROSS_DOMAIN_MESSENGER) return "L2CrossDomainMessenger"; if (_addr == GAS_PRICE_ORACLE) return "GasPriceOracle"; if (_addr == L2_STANDARD_BRIDGE) return "L2StandardBridge"; if (_addr == SEQUENCER_FEE_WALLET) return "SequencerFeeVault"; if (_addr == OPTIMISM_MINTABLE_ERC20_FACTORY) return "OptimismMintableERC20Factory"; if (_addr == L1_BLOCK_NUMBER) return "L1BlockNumber"; if (_addr == L2_ERC721_BRIDGE) return "L2ERC721Bridge"; if (_addr == L1_BLOCK_ATTRIBUTES) return "L1Block"; if (_addr == L2_TO_L1_MESSAGE_PASSER) return "L2ToL1MessagePasser"; if (_addr == OPTIMISM_MINTABLE_ERC721_FACTORY) return "OptimismMintableERC721Factory"; if (_addr == PROXY_ADMIN) return "ProxyAdmin"; if (_addr == BASE_FEE_VAULT) return "BaseFeeVault"; if (_addr == L1_FEE_VAULT) return "L1FeeVault"; if (_addr == SCHEMA_REGISTRY) return "SchemaRegistry"; if (_addr == EAS) return "EAS"; if (_addr == GOVERNANCE_TOKEN) return "GovernanceToken"; if (_addr == LEGACY_ERC20_ETH) return "LegacyERC20ETH"; if (_addr == CROSS_L2_INBOX) return "CrossL2Inbox"; if (_addr == L2_TO_L2_CROSS_DOMAIN_MESSENGER) return "L2ToL2CrossDomainMessenger"; revert("Predeploys: unnamed predeploy"); } /// @notice Returns true if the predeploy is not proxied. function notProxied(address _addr) internal pure returns (bool) { return _addr == GOVERNANCE_TOKEN || _addr == WETH9; } /// @notice Returns true if the address is a defined predeploy that is embedded into new OP-Stack chains. function isSupportedPredeploy(address _addr) internal pure returns (bool) { return _addr == LEGACY_MESSAGE_PASSER || _addr == DEPLOYER_WHITELIST || _addr == WETH9 || _addr == L2_CROSS_DOMAIN_MESSENGER || _addr == GAS_PRICE_ORACLE || _addr == L2_STANDARD_BRIDGE || _addr == SEQUENCER_FEE_WALLET || _addr == OPTIMISM_MINTABLE_ERC20_FACTORY || _addr == L1_BLOCK_NUMBER || _addr == L2_ERC721_BRIDGE || _addr == L1_BLOCK_ATTRIBUTES || _addr == L2_TO_L1_MESSAGE_PASSER || _addr == OPTIMISM_MINTABLE_ERC721_FACTORY || _addr == PROXY_ADMIN || _addr == BASE_FEE_VAULT || _addr == L1_FEE_VAULT || _addr == SCHEMA_REGISTRY || _addr == EAS || _addr == GOVERNANCE_TOKEN; } function isPredeployNamespace(address _addr) internal pure returns (bool) { return uint160(_addr) >> 11 == uint160(0x4200000000000000000000000000000000000000) >> 11; } /// @notice Function to compute the expected address of the predeploy implementation /// in the genesis state. function predeployToCodeNamespace(address _addr) internal pure returns (address) { require( isPredeployNamespace(_addr), "Predeploys: can only derive code-namespace address for predeploy addresses" ); return address( uint160(uint256(uint160(_addr)) & 0xffff | uint256(uint160(0xc0D3C0d3C0d3C0D3c0d3C0d3c0D3C0d3c0d30000))) ); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol"; import { Address } from "@openzeppelin/contracts/utils/Address.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { SafeCall } from "src/libraries/SafeCall.sol"; import { IOptimismMintableERC20, ILegacyMintableERC20 } from "src/universal/IOptimismMintableERC20.sol"; import { CrossDomainMessenger } from "src/universal/CrossDomainMessenger.sol"; import { OptimismMintableERC20 } from "src/universal/OptimismMintableERC20.sol"; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; /// @custom:upgradeable /// @title StandardBridge /// @notice StandardBridge is a base contract for the L1 and L2 standard ERC20 bridges. It handles /// the core bridging logic, including escrowing tokens that are native to the local chain /// and minting/burning tokens that are native to the remote chain. abstract contract StandardBridge is Initializable { using SafeERC20 for IERC20; /// @notice The L2 gas limit set when eth is depoisited using the receive() function. uint32 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 200_000; /// @custom:legacy /// @custom:spacer messenger /// @notice Spacer for backwards compatibility. bytes30 private spacer_0_2_30; /// @custom:legacy /// @custom:spacer l2TokenBridge /// @notice Spacer for backwards compatibility. address private spacer_1_0_20; /// @notice Mapping that stores deposits for a given pair of local and remote tokens. mapping(address => mapping(address => uint256)) public deposits; /// @notice Messenger contract on this domain. /// @custom:network-specific CrossDomainMessenger public messenger; /// @notice Corresponding bridge on the other domain. /// @custom:network-specific StandardBridge public otherBridge; /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. /// A gap size of 45 was chosen here, so that the first slot used in a child contract /// would be a multiple of 50. uint256[45] private __gap; /// @notice Emitted when an ETH bridge is initiated to the other chain. /// @param from Address of the sender. /// @param to Address of the receiver. /// @param amount Amount of ETH sent. /// @param extraData Extra data sent with the transaction. event ETHBridgeInitiated(address indexed from, address indexed to, uint256 amount, bytes extraData); /// @notice Emitted when an ETH bridge is finalized on this chain. /// @param from Address of the sender. /// @param to Address of the receiver. /// @param amount Amount of ETH sent. /// @param extraData Extra data sent with the transaction. event ETHBridgeFinalized(address indexed from, address indexed to, uint256 amount, bytes extraData); /// @notice Emitted when an ERC20 bridge is initiated to the other chain. /// @param localToken Address of the ERC20 on this chain. /// @param remoteToken Address of the ERC20 on the remote chain. /// @param from Address of the sender. /// @param to Address of the receiver. /// @param amount Amount of the ERC20 sent. /// @param extraData Extra data sent with the transaction. event ERC20BridgeInitiated( address indexed localToken, address indexed remoteToken, address indexed from, address to, uint256 amount, bytes extraData ); /// @notice Emitted when an ERC20 bridge is finalized on this chain. /// @param localToken Address of the ERC20 on this chain. /// @param remoteToken Address of the ERC20 on the remote chain. /// @param from Address of the sender. /// @param to Address of the receiver. /// @param amount Amount of the ERC20 sent. /// @param extraData Extra data sent with the transaction. event ERC20BridgeFinalized( address indexed localToken, address indexed remoteToken, address indexed from, address to, uint256 amount, bytes extraData ); /// @notice Only allow EOAs to call the functions. Note that this is not safe against contracts /// calling code within their constructors, but also doesn't really matter since we're /// just trying to prevent users accidentally depositing with smart contract wallets. modifier onlyEOA() { require(!Address.isContract(msg.sender), "StandardBridge: function can only be called from an EOA"); _; } /// @notice Ensures that the caller is a cross-chain message from the other bridge. modifier onlyOtherBridge() { require( msg.sender == address(messenger) && messenger.xDomainMessageSender() == address(otherBridge), "StandardBridge: function can only be called from the other bridge" ); _; } /// @notice Initializer. /// @param _messenger Contract for CrossDomainMessenger on this network. /// @param _otherBridge Contract for the other StandardBridge contract. function __StandardBridge_init( CrossDomainMessenger _messenger, StandardBridge _otherBridge ) internal onlyInitializing { messenger = _messenger; otherBridge = _otherBridge; } /// @notice Allows EOAs to bridge ETH by sending directly to the bridge. /// Must be implemented by contracts that inherit. receive() external payable virtual; /// @notice Getter for messenger contract. /// Public getter is legacy and will be removed in the future. Use `messenger` instead. /// @return Contract of the messenger on this domain. /// @custom:legacy function MESSENGER() external view returns (CrossDomainMessenger) { return messenger; } /// @notice Getter for the other bridge contract. /// Public getter is legacy and will be removed in the future. Use `otherBridge` instead. /// @return Contract of the bridge on the other network. /// @custom:legacy function OTHER_BRIDGE() external view returns (StandardBridge) { return otherBridge; } /// @notice This function should return true if the contract is paused. /// On L1 this function will check the SuperchainConfig for its paused status. /// On L2 this function should be a no-op. /// @return Whether or not the contract is paused. function paused() public view virtual returns (bool) { return false; } /// @notice Sends ETH to the sender's address on the other chain. /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will /// not be triggered with this data, but it will be emitted and can be used /// to identify the transaction. function bridgeETH(uint32 _minGasLimit, bytes calldata _extraData) public payable onlyEOA { _initiateBridgeETH(msg.sender, msg.sender, msg.value, _minGasLimit, _extraData); } /// @notice Sends ETH to a receiver's address on the other chain. Note that if ETH is sent to a /// smart contract and the call fails, the ETH will be temporarily locked in the /// StandardBridge on the other chain until the call is replayed. If the call cannot be /// replayed with any amount of gas (call always reverts), then the ETH will be /// permanently locked in the StandardBridge on the other chain. ETH will also /// be locked if the receiver is the other bridge, because finalizeBridgeETH will revert /// in that case. /// @param _to Address of the receiver. /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will /// not be triggered with this data, but it will be emitted and can be used /// to identify the transaction. function bridgeETHTo(address _to, uint32 _minGasLimit, bytes calldata _extraData) public payable { _initiateBridgeETH(msg.sender, _to, msg.value, _minGasLimit, _extraData); } /// @notice Sends ERC20 tokens to the sender's address on the other chain. /// @param _localToken Address of the ERC20 on this chain. /// @param _remoteToken Address of the corresponding token on the remote chain. /// @param _amount Amount of local tokens to deposit. /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will /// not be triggered with this data, but it will be emitted and can be used /// to identify the transaction. function bridgeERC20( address _localToken, address _remoteToken, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) public virtual onlyEOA { _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, msg.sender, _amount, _minGasLimit, _extraData); } /// @notice Sends ERC20 tokens to a receiver's address on the other chain. /// @param _localToken Address of the ERC20 on this chain. /// @param _remoteToken Address of the corresponding token on the remote chain. /// @param _to Address of the receiver. /// @param _amount Amount of local tokens to deposit. /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will /// not be triggered with this data, but it will be emitted and can be used /// to identify the transaction. function bridgeERC20To( address _localToken, address _remoteToken, address _to, uint256 _amount, uint32 _minGasLimit, bytes calldata _extraData ) public virtual { _initiateBridgeERC20(_localToken, _remoteToken, msg.sender, _to, _amount, _minGasLimit, _extraData); } /// @notice Finalizes an ETH bridge on this chain. Can only be triggered by the other /// StandardBridge contract on the remote chain. /// @param _from Address of the sender. /// @param _to Address of the receiver. /// @param _amount Amount of ETH being bridged. /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will /// not be triggered with this data, but it will be emitted and can be used /// to identify the transaction. function finalizeBridgeETH( address _from, address _to, uint256 _amount, bytes calldata _extraData ) public payable onlyOtherBridge { require(paused() == false, "StandardBridge: paused"); require(msg.value == _amount, "StandardBridge: amount sent does not match amount required"); require(_to != address(this), "StandardBridge: cannot send to self"); require(_to != address(messenger), "StandardBridge: cannot send to messenger"); // Emit the correct events. By default this will be _amount, but child // contracts may override this function in order to emit legacy events as well. _emitETHBridgeFinalized(_from, _to, _amount, _extraData); bool success = SafeCall.call(_to, gasleft(), _amount, hex""); require(success, "StandardBridge: ETH transfer failed"); } /// @notice Finalizes an ERC20 bridge on this chain. Can only be triggered by the other /// StandardBridge contract on the remote chain. /// @param _localToken Address of the ERC20 on this chain. /// @param _remoteToken Address of the corresponding token on the remote chain. /// @param _from Address of the sender. /// @param _to Address of the receiver. /// @param _amount Amount of the ERC20 being bridged. /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will /// not be triggered with this data, but it will be emitted and can be used /// to identify the transaction. function finalizeBridgeERC20( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes calldata _extraData ) public onlyOtherBridge { require(paused() == false, "StandardBridge: paused"); if (_isOptimismMintableERC20(_localToken)) { require( _isCorrectTokenPair(_localToken, _remoteToken), "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token" ); OptimismMintableERC20(_localToken).mint(_to, _amount); } else { deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] - _amount; IERC20(_localToken).safeTransfer(_to, _amount); } // Emit the correct events. By default this will be ERC20BridgeFinalized, but child // contracts may override this function in order to emit legacy events as well. _emitERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData); } /// @notice Initiates a bridge of ETH through the CrossDomainMessenger. /// @param _from Address of the sender. /// @param _to Address of the receiver. /// @param _amount Amount of ETH being bridged. /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will /// not be triggered with this data, but it will be emitted and can be used /// to identify the transaction. function _initiateBridgeETH( address _from, address _to, uint256 _amount, uint32 _minGasLimit, bytes memory _extraData ) internal { require(msg.value == _amount, "StandardBridge: bridging ETH must include sufficient ETH value"); // Emit the correct events. By default this will be _amount, but child // contracts may override this function in order to emit legacy events as well. _emitETHBridgeInitiated(_from, _to, _amount, _extraData); messenger.sendMessage{ value: _amount }({ _target: address(otherBridge), _message: abi.encodeWithSelector(this.finalizeBridgeETH.selector, _from, _to, _amount, _extraData), _minGasLimit: _minGasLimit }); } /// @notice Sends ERC20 tokens to a receiver's address on the other chain. /// @param _localToken Address of the ERC20 on this chain. /// @param _remoteToken Address of the corresponding token on the remote chain. /// @param _to Address of the receiver. /// @param _amount Amount of local tokens to deposit. /// @param _minGasLimit Minimum amount of gas that the bridge can be relayed with. /// @param _extraData Extra data to be sent with the transaction. Note that the recipient will /// not be triggered with this data, but it will be emitted and can be used /// to identify the transaction. function _initiateBridgeERC20( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, uint32 _minGasLimit, bytes memory _extraData ) internal { if (_isOptimismMintableERC20(_localToken)) { require( _isCorrectTokenPair(_localToken, _remoteToken), "StandardBridge: wrong remote token for Optimism Mintable ERC20 local token" ); OptimismMintableERC20(_localToken).burn(_from, _amount); } else { IERC20(_localToken).safeTransferFrom(_from, address(this), _amount); deposits[_localToken][_remoteToken] = deposits[_localToken][_remoteToken] + _amount; } // Emit the correct events. By default this will be ERC20BridgeInitiated, but child // contracts may override this function in order to emit legacy events as well. _emitERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData); messenger.sendMessage({ _target: address(otherBridge), _message: abi.encodeWithSelector( this.finalizeBridgeERC20.selector, // Because this call will be executed on the remote chain, we reverse the order of // the remote and local token addresses relative to their order in the // finalizeBridgeERC20 function. _remoteToken, _localToken, _from, _to, _amount, _extraData ), _minGasLimit: _minGasLimit }); } /// @notice Checks if a given address is an OptimismMintableERC20. Not perfect, but good enough. /// Just the way we like it. /// @param _token Address of the token to check. /// @return True if the token is an OptimismMintableERC20. function _isOptimismMintableERC20(address _token) internal view returns (bool) { return ERC165Checker.supportsInterface(_token, type(ILegacyMintableERC20).interfaceId) || ERC165Checker.supportsInterface(_token, type(IOptimismMintableERC20).interfaceId); } /// @notice Checks if the "other token" is the correct pair token for the OptimismMintableERC20. /// Calls can be saved in the future by combining this logic with /// `_isOptimismMintableERC20`. /// @param _mintableToken OptimismMintableERC20 to check against. /// @param _otherToken Pair token to check. /// @return True if the other token is the correct pair token for the OptimismMintableERC20. function _isCorrectTokenPair(address _mintableToken, address _otherToken) internal view returns (bool) { if (ERC165Checker.supportsInterface(_mintableToken, type(ILegacyMintableERC20).interfaceId)) { return _otherToken == ILegacyMintableERC20(_mintableToken).l1Token(); } else { return _otherToken == IOptimismMintableERC20(_mintableToken).remoteToken(); } } /// @notice Emits the ETHBridgeInitiated event and if necessary the appropriate legacy event /// when an ETH bridge is finalized on this chain. /// @param _from Address of the sender. /// @param _to Address of the receiver. /// @param _amount Amount of ETH sent. /// @param _extraData Extra data sent with the transaction. function _emitETHBridgeInitiated( address _from, address _to, uint256 _amount, bytes memory _extraData ) internal virtual { emit ETHBridgeInitiated(_from, _to, _amount, _extraData); } /// @notice Emits the ETHBridgeFinalized and if necessary the appropriate legacy event when an /// ETH bridge is finalized on this chain. /// @param _from Address of the sender. /// @param _to Address of the receiver. /// @param _amount Amount of ETH sent. /// @param _extraData Extra data sent with the transaction. function _emitETHBridgeFinalized( address _from, address _to, uint256 _amount, bytes memory _extraData ) internal virtual { emit ETHBridgeFinalized(_from, _to, _amount, _extraData); } /// @notice Emits the ERC20BridgeInitiated event and if necessary the appropriate legacy /// event when an ERC20 bridge is initiated to the other chain. /// @param _localToken Address of the ERC20 on this chain. /// @param _remoteToken Address of the ERC20 on the remote chain. /// @param _from Address of the sender. /// @param _to Address of the receiver. /// @param _amount Amount of the ERC20 sent. /// @param _extraData Extra data sent with the transaction. function _emitERC20BridgeInitiated( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes memory _extraData ) internal virtual { emit ERC20BridgeInitiated(_localToken, _remoteToken, _from, _to, _amount, _extraData); } /// @notice Emits the ERC20BridgeFinalized event and if necessary the appropriate legacy /// event when an ERC20 bridge is initiated to the other chain. /// @param _localToken Address of the ERC20 on this chain. /// @param _remoteToken Address of the ERC20 on the remote chain. /// @param _from Address of the sender. /// @param _to Address of the receiver. /// @param _amount Amount of the ERC20 sent. /// @param _extraData Extra data sent with the transaction. function _emitERC20BridgeFinalized( address _localToken, address _remoteToken, address _from, address _to, uint256 _amount, bytes memory _extraData ) internal virtual { emit ERC20BridgeFinalized(_localToken, _remoteToken, _from, _to, _amount, _extraData); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import { ILegacyMintableERC20, IOptimismMintableERC20 } from "src/universal/IOptimismMintableERC20.sol"; import { ISemver } from "src/universal/ISemver.sol"; /// @title OptimismMintableERC20 /// @notice OptimismMintableERC20 is a standard extension of the base ERC20 token contract designed /// to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to /// use an OptimismMintablERC20 as the L2 representation of an L1 token, or vice-versa. /// Designed to be backwards compatible with the older StandardL2ERC20 token which was only /// meant for use on L2. contract OptimismMintableERC20 is IOptimismMintableERC20, ILegacyMintableERC20, ERC20, ISemver { /// @notice Address of the corresponding version of this token on the remote chain. address public immutable REMOTE_TOKEN; /// @notice Address of the StandardBridge on this network. address public immutable BRIDGE; /// @notice Decimals of the token uint8 private immutable DECIMALS; /// @notice Emitted whenever tokens are minted for an account. /// @param account Address of the account tokens are being minted for. /// @param amount Amount of tokens minted. event Mint(address indexed account, uint256 amount); /// @notice Emitted whenever tokens are burned from an account. /// @param account Address of the account tokens are being burned from. /// @param amount Amount of tokens burned. event Burn(address indexed account, uint256 amount); /// @notice A modifier that only allows the bridge to call modifier onlyBridge() { require(msg.sender == BRIDGE, "OptimismMintableERC20: only bridge can mint and burn"); _; } /// @notice Semantic version. /// @custom:semver 1.3.0 string public constant version = "1.3.0"; /// @param _bridge Address of the L2 standard bridge. /// @param _remoteToken Address of the corresponding L1 token. /// @param _name ERC20 name. /// @param _symbol ERC20 symbol. constructor( address _bridge, address _remoteToken, string memory _name, string memory _symbol, uint8 _decimals ) ERC20(_name, _symbol) { REMOTE_TOKEN = _remoteToken; BRIDGE = _bridge; DECIMALS = _decimals; } /// @notice Allows the StandardBridge on this network to mint tokens. /// @param _to Address to mint tokens to. /// @param _amount Amount of tokens to mint. function mint( address _to, uint256 _amount ) external virtual override(IOptimismMintableERC20, ILegacyMintableERC20) onlyBridge { _mint(_to, _amount); emit Mint(_to, _amount); } /// @notice Allows the StandardBridge on this network to burn tokens. /// @param _from Address to burn tokens from. /// @param _amount Amount of tokens to burn. function burn( address _from, uint256 _amount ) external virtual override(IOptimismMintableERC20, ILegacyMintableERC20) onlyBridge { _burn(_from, _amount); emit Burn(_from, _amount); } /// @notice ERC165 interface check function. /// @param _interfaceId Interface ID to check. /// @return Whether or not the interface is supported by this contract. function supportsInterface(bytes4 _interfaceId) external pure virtual returns (bool) { bytes4 iface1 = type(IERC165).interfaceId; // Interface corresponding to the legacy L2StandardERC20. bytes4 iface2 = type(ILegacyMintableERC20).interfaceId; // Interface corresponding to the updated OptimismMintableERC20 (this contract). bytes4 iface3 = type(IOptimismMintableERC20).interfaceId; return _interfaceId == iface1 || _interfaceId == iface2 || _interfaceId == iface3; } /// @custom:legacy /// @notice Legacy getter for the remote token. Use REMOTE_TOKEN going forward. function l1Token() public view returns (address) { return REMOTE_TOKEN; } /// @custom:legacy /// @notice Legacy getter for the bridge. Use BRIDGE going forward. function l2Bridge() public view returns (address) { return BRIDGE; } /// @custom:legacy /// @notice Legacy getter for REMOTE_TOKEN. function remoteToken() public view returns (address) { return REMOTE_TOKEN; } /// @custom:legacy /// @notice Legacy getter for BRIDGE. function bridge() public view returns (address) { return BRIDGE; } /// @dev Returns the number of decimals used to get its user representation. /// For example, if `decimals` equals `2`, a balance of `505` tokens should /// be displayed to a user as `5.05` (`505 / 10 ** 2`). /// NOTE: This information is only used for _display_ purposes: it in /// no way affects any of the arithmetic of the contract, including /// {IERC20-balanceOf} and {IERC20-transfer}. function decimals() public view override returns (uint8) { return DECIMALS; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import { SafeCall } from "src/libraries/SafeCall.sol"; import { Hashing } from "src/libraries/Hashing.sol"; import { Encoding } from "src/libraries/Encoding.sol"; import { Constants } from "src/libraries/Constants.sol"; /// @custom:legacy /// @title CrossDomainMessengerLegacySpacer0 /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the /// libAddressManager variable used to exist. Must be the first contract in the inheritance /// tree of the CrossDomainMessenger. contract CrossDomainMessengerLegacySpacer0 { /// @custom:legacy /// @custom:spacer libAddressManager /// @notice Spacer for backwards compatibility. address private spacer_0_0_20; } /// @custom:legacy /// @title CrossDomainMessengerLegacySpacer1 /// @notice Contract only exists to add a spacer to the CrossDomainMessenger where the /// PausableUpgradable and OwnableUpgradeable variables used to exist. Must be /// the third contract in the inheritance tree of the CrossDomainMessenger. contract CrossDomainMessengerLegacySpacer1 { /// @custom:legacy /// @custom:spacer ContextUpgradable's __gap /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin /// ContextUpgradable. uint256[50] private spacer_1_0_1600; /// @custom:legacy /// @custom:spacer OwnableUpgradeable's _owner /// @notice Spacer for backwards compatibility. /// Come from OpenZeppelin OwnableUpgradeable. address private spacer_51_0_20; /// @custom:legacy /// @custom:spacer OwnableUpgradeable's __gap /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin /// OwnableUpgradeable. uint256[49] private spacer_52_0_1568; /// @custom:legacy /// @custom:spacer PausableUpgradable's _paused /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin /// PausableUpgradable. bool private spacer_101_0_1; /// @custom:legacy /// @custom:spacer PausableUpgradable's __gap /// @notice Spacer for backwards compatibility. Comes from OpenZeppelin /// PausableUpgradable. uint256[49] private spacer_102_0_1568; /// @custom:legacy /// @custom:spacer ReentrancyGuardUpgradeable's `_status` field. /// @notice Spacer for backwards compatibility. uint256 private spacer_151_0_32; /// @custom:legacy /// @custom:spacer ReentrancyGuardUpgradeable's __gap /// @notice Spacer for backwards compatibility. uint256[49] private spacer_152_0_1568; /// @custom:legacy /// @custom:spacer blockedMessages /// @notice Spacer for backwards compatibility. mapping(bytes32 => bool) private spacer_201_0_32; /// @custom:legacy /// @custom:spacer relayedMessages /// @notice Spacer for backwards compatibility. mapping(bytes32 => bool) private spacer_202_0_32; } /// @custom:upgradeable /// @title CrossDomainMessenger /// @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2 /// cross-chain messenger contracts. It's designed to be a universal interface that only /// needs to be extended slightly to provide low-level message passing functionality on each /// chain it's deployed on. Currently only designed for message passing between two paired /// chains and does not support one-to-many interactions. /// Any changes to this contract MUST result in a semver bump for contracts that inherit it. abstract contract CrossDomainMessenger is CrossDomainMessengerLegacySpacer0, Initializable, CrossDomainMessengerLegacySpacer1 { /// @notice Current message version identifier. uint16 public constant MESSAGE_VERSION = 1; /// @notice Constant overhead added to the base gas for a message. uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000; /// @notice Numerator for dynamic overhead added to the base gas for a message. uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64; /// @notice Denominator for dynamic overhead added to the base gas for a message. uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63; /// @notice Extra gas added to base gas for each byte of calldata in a message. uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16; /// @notice Gas reserved for performing the external call in `relayMessage`. uint64 public constant RELAY_CALL_OVERHEAD = 40_000; /// @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call. uint64 public constant RELAY_RESERVED_GAS = 40_000; /// @notice Gas reserved for the execution between the `hasMinGas` check and the external /// call in `relayMessage`. uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000; /// @notice Mapping of message hashes to boolean receipt values. Note that a message will only /// be present in this mapping if it has successfully been relayed on this chain, and /// can therefore not be relayed again. mapping(bytes32 => bool) public successfulMessages; /// @notice Address of the sender of the currently executing message on the other chain. If the /// value of this variable is the default value (0x00000000...dead) then no message is /// currently being executed. Use the xDomainMessageSender getter which will throw an /// error if this is the case. address internal xDomainMsgSender; /// @notice Nonce for the next message to be sent, without the message version applied. Use the /// messageNonce getter which will insert the message version into the nonce to give you /// the actual nonce to be used for the message. uint240 internal msgNonce; /// @notice Mapping of message hashes to a boolean if and only if the message has failed to be /// executed at least once. A message will not be present in this mapping if it /// successfully executed on the first attempt. mapping(bytes32 => bool) public failedMessages; /// @notice CrossDomainMessenger contract on the other chain. /// @custom:network-specific CrossDomainMessenger public otherMessenger; /// @notice Reserve extra slots in the storage layout for future upgrades. /// A gap size of 43 was chosen here, so that the first slot used in a child contract /// would be 1 plus a multiple of 50. uint256[43] private __gap; /// @notice Emitted whenever a message is sent to the other chain. /// @param target Address of the recipient of the message. /// @param sender Address of the sender of the message. /// @param message Message to trigger the recipient address with. /// @param messageNonce Unique nonce attached to the message. /// @param gasLimit Minimum gas limit that the message can be executed with. event SentMessage(address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit); /// @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the /// SentMessage event without breaking the ABI of this contract, this is good enough. /// @param sender Address of the sender of the message. /// @param value ETH value sent along with the message to the recipient. event SentMessageExtension1(address indexed sender, uint256 value); /// @notice Emitted whenever a message is successfully relayed on this chain. /// @param msgHash Hash of the message that was relayed. event RelayedMessage(bytes32 indexed msgHash); /// @notice Emitted whenever a message fails to be relayed on this chain. /// @param msgHash Hash of the message that failed to be relayed. event FailedRelayedMessage(bytes32 indexed msgHash); /// @notice Sends a message to some target address on the other chain. Note that if the call /// always reverts, then the message will be unrelayable, and any ETH sent will be /// permanently locked. The same will occur if the target on the other chain is /// considered unsafe (see the _isUnsafeTarget() function). /// @param _target Target contract or wallet address. /// @param _message Message to trigger the target address with. /// @param _minGasLimit Minimum gas limit that the message can be executed with. function sendMessage(address _target, bytes calldata _message, uint32 _minGasLimit) external payable { // Triggers a message to the other messenger. Note that the amount of gas provided to the // message is the amount of gas requested by the user PLUS the base gas value. We want to // guarantee the property that the call to the target contract will always have at least // the minimum gas limit specified by the user. _sendMessage({ _to: address(otherMessenger), _gasLimit: baseGas(_message, _minGasLimit), _value: msg.value, _data: abi.encodeWithSelector( this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message ) }); emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit); emit SentMessageExtension1(msg.sender, msg.value); unchecked { ++msgNonce; } } /// @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only /// be executed via cross-chain call from the other messenger OR if the message was /// already received once and is currently being replayed. /// @param _nonce Nonce of the message being relayed. /// @param _sender Address of the user who sent the message. /// @param _target Address that the message is targeted at. /// @param _value ETH value to send with the message. /// @param _minGasLimit Minimum amount of gas that the message can be executed with. /// @param _message Message to send to the target. function relayMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _minGasLimit, bytes calldata _message ) external payable { // On L1 this function will check the Portal for its paused status. // On L2 this function should be a no-op, because paused will always return false. require(paused() == false, "CrossDomainMessenger: paused"); (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); require(version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time"); // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need // to check that the legacy version of the message has not already been relayed. if (version == 0) { bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce); require(successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed"); } // We use the v1 message hash as the unique identifier for the message because it commits // to the value and minimum gas limit of the message. bytes32 versionedHash = Hashing.hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _minGasLimit, _message); if (_isOtherMessenger()) { // These properties should always hold when the message is first submitted (as // opposed to being replayed). assert(msg.value == _value); assert(!failedMessages[versionedHash]); } else { require(msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address"); require(failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed"); } require( _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address" ); require(successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed"); // If there is not enough gas left to perform the external call and finish the execution, // return early and assign the message to the failedMessages mapping. // We are asserting that we have enough gas to: // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER) // 1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`. // 2. Finish the execution after the external call (RELAY_RESERVED_GAS). // // If `xDomainMsgSender` is not the default L2 sender, this function // is being re-entered. This marks the message as failed to allow it to be replayed. if ( !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER) || xDomainMsgSender != Constants.DEFAULT_L2_SENDER ) { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } return; } xDomainMsgSender = _sender; bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message); xDomainMsgSender = Constants.DEFAULT_L2_SENDER; if (success) { // This check is identical to one above, but it ensures that the same message cannot be relayed // twice, and adds a layer of protection against rentrancy. assert(successfulMessages[versionedHash] == false); successfulMessages[versionedHash] = true; emit RelayedMessage(versionedHash); } else { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } } } /// @notice Retrieves the address of the contract or wallet that initiated the currently /// executing message on the other chain. Will throw an error if there is no message /// currently being executed. Allows the recipient of a call to see who triggered it. /// @return Address of the sender of the currently executing message on the other chain. function xDomainMessageSender() external view returns (address) { require( xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set" ); return xDomainMsgSender; } /// @notice Retrieves the address of the paired CrossDomainMessenger contract on the other chain /// Public getter is legacy and will be removed in the future. Use `otherMessenger()` instead. /// @return CrossDomainMessenger contract on the other chain. /// @custom:legacy function OTHER_MESSENGER() public view returns (CrossDomainMessenger) { return otherMessenger; } /// @notice Retrieves the next message nonce. Message version will be added to the upper two /// bytes of the message nonce. Message version allows us to treat messages as having /// different structures. /// @return Nonce of the next message to be sent, with added message version. function messageNonce() public view returns (uint256) { return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION); } /// @notice Computes the amount of gas required to guarantee that a given message will be /// received on the other chain without running out of gas. Guaranteeing that a message /// will not run out of gas is important because this ensures that a message can always /// be replayed on the other chain if it fails to execute completely. /// @param _message Message to compute the amount of required gas for. /// @param _minGasLimit Minimum desired gas limit when message goes to target. /// @return Amount of gas required to guarantee message receipt. function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) { return // Constant overhead RELAY_CONSTANT_OVERHEAD // Calldata overhead + (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD) // Dynamic overhead (EIP-150) + ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR) // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas // factors. (Conservative) + RELAY_CALL_OVERHEAD // Relay reserved gas (to ensure execution of `relayMessage` completes after the // subcontext finishes executing) (Conservative) + RELAY_RESERVED_GAS // Gas reserved for the execution between the `hasMinGas` check and the `CALL` // opcode. (Conservative) + RELAY_GAS_CHECK_BUFFER; } /// @notice Initializer. /// @param _otherMessenger CrossDomainMessenger contract on the other chain. function __CrossDomainMessenger_init(CrossDomainMessenger _otherMessenger) internal onlyInitializing { // We only want to set the xDomainMsgSender to the default value if it hasn't been initialized yet, // meaning that this is a fresh contract deployment. // This prevents resetting the xDomainMsgSender to the default value during an upgrade, which would enable // a reentrant withdrawal to sandwhich the upgrade replay a withdrawal twice. if (xDomainMsgSender == address(0)) { xDomainMsgSender = Constants.DEFAULT_L2_SENDER; } otherMessenger = _otherMessenger; } /// @notice Sends a low-level message to the other messenger. Needs to be implemented by child /// contracts because the logic for this depends on the network where the messenger is /// being deployed. /// @param _to Recipient of the message on the other chain. /// @param _gasLimit Minimum gas limit the message can be executed with. /// @param _value Amount of ETH to send with the message. /// @param _data Message data. function _sendMessage(address _to, uint64 _gasLimit, uint256 _value, bytes memory _data) internal virtual; /// @notice Checks whether the message is coming from the other messenger. Implemented by child /// contracts because the logic for this depends on the network where the messenger is /// being deployed. /// @return Whether the message is coming from the other messenger. function _isOtherMessenger() internal view virtual returns (bool); /// @notice Checks whether a given call target is a system address that could cause the /// messenger to peform an unsafe action. This is NOT a mechanism for blocking user /// addresses. This is ONLY used to prevent the execution of messages to specific /// system addresses that could cause security issues, e.g., having the /// CrossDomainMessenger send messages to itself. /// @param _target Address of the contract to check. /// @return Whether or not the address is an unsafe system address. function _isUnsafeTarget(address _target) internal view virtual returns (bool); /// @notice This function should return true if the contract is paused. /// On L1 this function will check the SuperchainConfig for its paused status. /// On L2 this function should be a no-op. /// @return Whether or not the contract is paused. function paused() public view virtual returns (bool) { return false; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { ResourceMetering } from "src/L1/ResourceMetering.sol"; /// @title Constants /// @notice Constants is a library for storing constants. Simple! Don't put everything in here, just /// the stuff used in multiple contracts. Constants that only apply to a single contract /// should be defined in that contract instead. library Constants { /// @notice Special address to be used as the tx origin for gas estimation calls in the /// OptimismPortal and CrossDomainMessenger calls. You only need to use this address if /// the minimum gas limit specified by the user is not actually enough to execute the /// given message and you're attempting to estimate the actual necessary gas limit. We /// use address(1) because it's the ecrecover precompile and therefore guaranteed to /// never have any code on any EVM chain. address internal constant ESTIMATION_ADDRESS = address(1); /// @notice Value used for the L2 sender storage slot in both the OptimismPortal and the /// CrossDomainMessenger contracts before an actual sender is set. This value is /// non-zero to reduce the gas cost of message passing transactions. address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD; /// @notice The storage slot that holds the address of a proxy implementation. /// @dev `bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)` bytes32 internal constant PROXY_IMPLEMENTATION_ADDRESS = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /// @notice The storage slot that holds the address of the owner. /// @dev `bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)` bytes32 internal constant PROXY_OWNER_ADDRESS = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /// @notice Returns the default values for the ResourceConfig. These are the recommended values /// for a production network. function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) { ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({ maxResourceLimit: 20_000_000, elasticityMultiplier: 10, baseFeeMaxChangeDenominator: 8, minimumBaseFee: 1 gwei, systemTxMaxGas: 1_000_000, maximumBaseFee: type(uint128).max }); return config; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.2) (utils/introspection/ERC165Checker.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Library used to query support of an interface declared via {IERC165}. * * Note that these functions return the actual result of the query: they do not * `revert` if an interface is not supported. It is up to the caller to decide * what to do in these cases. */ library ERC165Checker { // As per the EIP-165 spec, no interface should ever match 0xffffffff bytes4 private constant _INTERFACE_ID_INVALID = 0xffffffff; /** * @dev Returns true if `account` supports the {IERC165} interface, */ function supportsERC165(address account) internal view returns (bool) { // Any contract that implements ERC165 must explicitly indicate support of // InterfaceId_ERC165 and explicitly indicate non-support of InterfaceId_Invalid return _supportsERC165Interface(account, type(IERC165).interfaceId) && !_supportsERC165Interface(account, _INTERFACE_ID_INVALID); } /** * @dev Returns true if `account` supports the interface defined by * `interfaceId`. Support for {IERC165} itself is queried automatically. * * See {IERC165-supportsInterface}. */ function supportsInterface(address account, bytes4 interfaceId) internal view returns (bool) { // query support of both ERC165 as per the spec and support of _interfaceId return supportsERC165(account) && _supportsERC165Interface(account, interfaceId); } /** * @dev Returns a boolean array where each value corresponds to the * interfaces passed in and whether they're supported or not. This allows * you to batch check interfaces for a contract where your expectation * is that some interfaces may not be supported. * * See {IERC165-supportsInterface}. * * _Available since v3.4._ */ function getSupportedInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool[] memory) { // an array of booleans corresponding to interfaceIds and whether they're supported or not bool[] memory interfaceIdsSupported = new bool[](interfaceIds.length); // query support of ERC165 itself if (supportsERC165(account)) { // query support of each interface in interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { interfaceIdsSupported[i] = _supportsERC165Interface(account, interfaceIds[i]); } } return interfaceIdsSupported; } /** * @dev Returns true if `account` supports all the interfaces defined in * `interfaceIds`. Support for {IERC165} itself is queried automatically. * * Batch-querying can lead to gas savings by skipping repeated checks for * {IERC165} support. * * See {IERC165-supportsInterface}. */ function supportsAllInterfaces(address account, bytes4[] memory interfaceIds) internal view returns (bool) { // query support of ERC165 itself if (!supportsERC165(account)) { return false; } // query support of each interface in _interfaceIds for (uint256 i = 0; i < interfaceIds.length; i++) { if (!_supportsERC165Interface(account, interfaceIds[i])) { return false; } } // all interfaces supported return true; } /** * @notice Query if a contract implements an interface, does not check ERC165 support * @param account The address of the contract to query for support of an interface * @param interfaceId The interface identifier, as specified in ERC-165 * @return true if the contract at account indicates support of the interface with * identifier interfaceId, false otherwise * @dev Assumes that account contains a contract that supports ERC165, otherwise * the behavior of this method is undefined. This precondition can be checked * with {supportsERC165}. * Interface identification is specified in ERC-165. */ function _supportsERC165Interface(address account, bytes4 interfaceId) private view returns (bool) { // prepare call bytes memory encodedParams = abi.encodeWithSelector(IERC165.supportsInterface.selector, interfaceId); // perform static call bool success; uint256 returnSize; uint256 returnValue; assembly { success := staticcall(30000, account, add(encodedParams, 0x20), mload(encodedParams), 0x00, 0x20) returnSize := returndatasize() returnValue := mload(0x00) } return success && returnSize >= 0x20 && returnValue > 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /// @title SafeCall /// @notice Perform low level safe calls library SafeCall { /// @notice Performs a low level call without copying any returndata. /// @dev Passes no calldata to the call context. /// @param _target Address to call /// @param _gas Amount of gas to pass to the call /// @param _value Amount of value to pass to the call function send(address _target, uint256 _gas, uint256 _value) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value 0, // inloc 0, // inlen 0, // outloc 0 // outlen ) } return _success; } /// @notice Perform a low level call without copying any returndata /// @param _target Address to call /// @param _gas Amount of gas to pass to the call /// @param _value Amount of value to pass to the call /// @param _calldata Calldata to pass to the call function call(address _target, uint256 _gas, uint256 _value, bytes memory _calldata) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) } return _success; } /// @notice Helper function to determine if there is sufficient gas remaining within the context /// to guarantee that the minimum gas requirement for a call will be met as well as /// optionally reserving a specified amount of gas for after the call has concluded. /// @param _minGas The minimum amount of gas that may be passed to the target context. /// @param _reservedGas Optional amount of gas to reserve for the caller after the execution /// of the target context. /// @return `true` if there is enough gas remaining to safely supply `_minGas` to the target /// context as well as reserve `_reservedGas` for the caller after the execution of /// the target context. /// @dev !!!!! FOOTGUN ALERT !!!!! /// 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the /// `CALL` opcode's `address_access_cost`, `positive_value_cost`, and /// `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is /// still possible to self-rekt by initiating a withdrawal with a minimum gas limit /// that does not account for the `memory_expansion_cost` & `code_execution_cost` /// factors of the dynamic cost of the `CALL` opcode. /// 2.) This function should *directly* precede the external call if possible. There is an /// added buffer to account for gas consumed between this check and the call, but it /// is only 5,700 gas. /// 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call /// frame may be passed to a subcontext, we need to ensure that the gas will not be /// truncated. /// 4.) Use wisely. This function is not a silver bullet. function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) { bool _hasMinGas; assembly { // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas) _hasMinGas := iszero(lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63)))) } return _hasMinGas; } /// @notice Perform a low level call without copying any returndata. This function /// will revert if the call cannot be performed with the specified minimum /// gas. /// @param _target Address to call /// @param _minGas The minimum amount of gas that may be passed to the call /// @param _value Amount of value to pass to the call /// @param _calldata Calldata to pass to the call function callWithMinGas( address _target, uint256 _minGas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; bool _hasMinGas = hasMinGas(_minGas, 0); assembly { // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000 if iszero(_hasMinGas) { // Store the "Error(string)" selector in scratch space. mstore(0, 0x08c379a0) // Store the pointer to the string length in scratch space. mstore(32, 32) // Store the string. // // SAFETY: // - We pad the beginning of the string with two zero bytes as well as the // length (24) to ensure that we override the free memory pointer at offset // 0x40. This is necessary because the free memory pointer is likely to // be greater than 1 byte when this function is called, but it is incredibly // unlikely that it will be greater than 3 bytes. As for the data within // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset. // - It's fine to clobber the free memory pointer, we're reverting. mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173) // Revert with 'Error("SafeCall: Not enough gas")' revert(28, 100) } // The call will be supplied at least ((_minGas * 64) / 63) gas due to the // above assertion. This ensures that, in all circumstances (except for when the // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost` // factors of the dynamic cost of the `CALL` opcode), the call will receive at least // the minimum amount of gas specified. _success := call( gas(), // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0x00, // outloc 0x00 // outlen ) } return _success; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; /// @title IOptimismMintableERC20 /// @notice This interface is available on the OptimismMintableERC20 contract. /// We declare it as a separate interface so that it can be used in /// custom implementations of OptimismMintableERC20. interface IOptimismMintableERC20 is IERC165 { function remoteToken() external view returns (address); function bridge() external returns (address); function mint(address _to, uint256 _amount) external; function burn(address _from, uint256 _amount) external; } /// @custom:legacy /// @title ILegacyMintableERC20 /// @notice This interface was available on the legacy L2StandardERC20 contract. /// It remains available on the OptimismMintableERC20 contract for /// backwards compatibility. interface ILegacyMintableERC20 is IERC165 { function l1Token() external view returns (address); function mint(address _to, uint256 _amount) external; function burn(address _from, uint256 _amount) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; } _balances[to] += amount; emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "src/libraries/Types.sol"; import { Encoding } from "src/libraries/Encoding.sol"; /// @title Hashing /// @notice Hashing handles Optimism's various different hashing schemes. library Hashing { /// @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a /// given deposit is sent to the L2 system. Useful for searching for a deposit in the L2 /// system. /// @param _tx User deposit transaction to hash. /// @return Hash of the RLP encoded L2 deposit transaction. function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) { return keccak256(Encoding.encodeDepositTransaction(_tx)); } /// @notice Computes the deposit transaction's "source hash", a value that guarantees the hash /// of the L2 transaction that corresponds to a deposit is unique and is /// deterministically generated from L1 transaction data. /// @param _l1BlockHash Hash of the L1 block where the deposit was included. /// @param _logIndex The index of the log that created the deposit transaction. /// @return Hash of the deposit transaction's "source hash". function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) { bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex)); return keccak256(abi.encode(bytes32(0), depositId)); } /// @notice Hashes the cross domain message based on the version that is encoded into the /// message nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Hashed cross domain message. function hashCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); if (version == 0) { return hashCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Hashing: unknown cross domain message version"); } } /// @notice Hashes a cross domain message based on the V0 (legacy) encoding. /// @param _target Address of the target of the message. /// @param _sender Address of the sender of the message. /// @param _data Data to send with the message. /// @param _nonce Message nonce. /// @return Hashed cross domain message. function hashCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce)); } /// @notice Hashes a cross domain message based on the V1 (current) encoding. /// @param _nonce Message nonce. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Hashed cross domain message. function hashCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data)); } /// @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract /// @param _tx Withdrawal transaction to hash. /// @return Hashed withdrawal transaction. function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) { return keccak256(abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data)); } /// @notice Hashes the various elements of an output root proof into an output root hash which /// can be used to check if the proof is valid. /// @param _outputRootProof Output root proof which should hash to an output root. /// @return Hashed output root proof. function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { return keccak256( abi.encode( _outputRootProof.version, _outputRootProof.stateRoot, _outputRootProof.messagePasserStorageRoot, _outputRootProof.latestBlockhash ) ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "src/libraries/Types.sol"; import { Hashing } from "src/libraries/Hashing.sol"; import { RLPWriter } from "src/libraries/rlp/RLPWriter.sol"; /// @title Encoding /// @notice Encoding handles Optimism's various different encoding schemes. library Encoding { /// @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent /// to the L2 system. Useful for searching for a deposit in the L2 system. The /// transaction is prefixed with 0x7e to identify its EIP-2718 type. /// @param _tx User deposit transaction to encode. /// @return RLP encoded L2 deposit transaction. function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) { bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex); bytes[] memory raw = new bytes[](8); raw[0] = RLPWriter.writeBytes(abi.encodePacked(source)); raw[1] = RLPWriter.writeAddress(_tx.from); raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to); raw[3] = RLPWriter.writeUint(_tx.mint); raw[4] = RLPWriter.writeUint(_tx.value); raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit)); raw[6] = RLPWriter.writeBool(false); raw[7] = RLPWriter.writeBytes(_tx.data); return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw)); } /// @notice Encodes the cross domain message based on the version that is encoded into the /// message nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Encoded cross domain message. function encodeCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { (, uint16 version) = decodeVersionedNonce(_nonce); if (version == 0) { return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Encoding: unknown cross domain message version"); } } /// @notice Encodes a cross domain message based on the V0 (legacy) encoding. /// @param _target Address of the target of the message. /// @param _sender Address of the sender of the message. /// @param _data Data to send with the message. /// @param _nonce Message nonce. /// @return Encoded cross domain message. function encodeCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes memory) { return abi.encodeWithSignature("relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce); } /// @notice Encodes a cross domain message based on the V1 (current) encoding. /// @param _nonce Message nonce. /// @param _sender Address of the sender of the message. /// @param _target Address of the target of the message. /// @param _value ETH value to send to the target. /// @param _gasLimit Gas limit to use for the message. /// @param _data Data to send with the message. /// @return Encoded cross domain message. function encodeCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(uint256,address,address,uint256,uint256,bytes)", _nonce, _sender, _target, _value, _gasLimit, _data ); } /// @notice Adds a version number into the first two bytes of a message nonce. /// @param _nonce Message nonce to encode into. /// @param _version Version number to encode into the message nonce. /// @return Message nonce with version encoded into the first two bytes. function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) { uint256 nonce; assembly { nonce := or(shl(240, _version), _nonce) } return nonce; } /// @notice Pulls the version out of a version-encoded nonce. /// @param _nonce Message nonce with version encoded into the first two bytes. /// @return Nonce without encoded version. /// @return Version of the message. function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) { uint240 nonce; uint16 version; assembly { nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) version := shr(240, _nonce) } return (nonce, version); } /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesEcotone /// @param baseFeeScalar L1 base fee Scalar /// @param blobBaseFeeScalar L1 blob base fee Scalar /// @param sequenceNumber Number of L2 blocks since epoch start. /// @param timestamp L1 timestamp. /// @param number L1 blocknumber. /// @param baseFee L1 base fee. /// @param blobBaseFee L1 blob base fee. /// @param hash L1 blockhash. /// @param batcherHash Versioned hash to authenticate batcher by. function encodeSetL1BlockValuesEcotone( uint32 baseFeeScalar, uint32 blobBaseFeeScalar, uint64 sequenceNumber, uint64 timestamp, uint64 number, uint256 baseFee, uint256 blobBaseFee, bytes32 hash, bytes32 batcherHash ) internal pure returns (bytes memory) { bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesEcotone()")); return abi.encodePacked( functionSignature, baseFeeScalar, blobBaseFeeScalar, sequenceNumber, timestamp, number, baseFee, blobBaseFee, hash, batcherHash ); } /// @notice Returns an appropriately encoded call to L1Block.setL1BlockValuesInterop /// @param _baseFeeScalar L1 base fee Scalar /// @param _blobBaseFeeScalar L1 blob base fee Scalar /// @param _sequenceNumber Number of L2 blocks since epoch start. /// @param _timestamp L1 timestamp. /// @param _number L1 blocknumber. /// @param _baseFee L1 base fee. /// @param _blobBaseFee L1 blob base fee. /// @param _hash L1 blockhash. /// @param _batcherHash Versioned hash to authenticate batcher by. /// @param _dependencySet Array of the chain IDs in the interop dependency set. function encodeSetL1BlockValuesInterop( uint32 _baseFeeScalar, uint32 _blobBaseFeeScalar, uint64 _sequenceNumber, uint64 _timestamp, uint64 _number, uint256 _baseFee, uint256 _blobBaseFee, bytes32 _hash, bytes32 _batcherHash, uint256[] memory _dependencySet ) internal pure returns (bytes memory) { require(_dependencySet.length <= type(uint8).max, "Encoding: dependency set length is too large"); // Check that the batcher hash is just the address with 0 padding to the left for version 0. require(uint160(uint256(_batcherHash)) == uint256(_batcherHash), "Encoding: invalid batcher hash"); bytes4 functionSignature = bytes4(keccak256("setL1BlockValuesInterop()")); return abi.encodePacked( functionSignature, _baseFeeScalar, _blobBaseFeeScalar, _sequenceNumber, _timestamp, _number, _baseFee, _blobBaseFee, _hash, _batcherHash, uint8(_dependencySet.length), _dependencySet ); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Burn } from "src/libraries/Burn.sol"; import { Arithmetic } from "src/libraries/Arithmetic.sol"; /// @custom:upgradeable /// @title ResourceMetering /// @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing /// updates automatically based on current demand. abstract contract ResourceMetering is Initializable { /// @notice Error returned when too much gas resource is consumed. error OutOfGas(); /// @notice Represents the various parameters that control the way in which resources are /// metered. Corresponds to the EIP-1559 resource metering system. /// @custom:field prevBaseFee Base fee from the previous block(s). /// @custom:field prevBoughtGas Amount of gas bought so far in the current block. /// @custom:field prevBlockNum Last block number that the base fee was updated. struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } /// @notice Represents the configuration for the EIP-1559 based curve for the deposit gas /// market. These values should be set with care as it is possible to set them in /// a way that breaks the deposit gas market. The target resource limit is defined as /// maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a /// single word. There is additional space for additions in the future. /// @custom:field maxResourceLimit Represents the maximum amount of deposit gas that /// can be purchased per block. /// @custom:field elasticityMultiplier Determines the target resource limit along with /// the resource limit. /// @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block. /// @custom:field minimumBaseFee The min deposit base fee, it is clamped to this /// value. /// @custom:field systemTxMaxGas The amount of gas supplied to the system /// transaction. This should be set to the same /// number that the op-node sets as the gas limit /// for the system transaction. /// @custom:field maximumBaseFee The max deposit base fee, it is clamped to this /// value. struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } /// @notice EIP-1559 style gas parameters. ResourceParams public params; /// @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. uint256[48] private __gap; /// @notice Meters access to a function based an amount of a requested resource. /// @param _amount Amount of the resource requested. modifier metered(uint64 _amount) { // Record initial gas amount so we can refund for it later. uint256 initialGas = gasleft(); // Run the underlying function. _; // Run the metering function. _metered(_amount, initialGas); } /// @notice An internal function that holds all of the logic for metering a resource. /// @param _amount Amount of the resource requested. /// @param _initialGas The amount of gas before any modifier execution. function _metered(uint64 _amount, uint256 _initialGas) internal { // Update block number and base fee if necessary. uint256 blockDiff = block.number - params.prevBlockNum; ResourceConfig memory config = _resourceConfig(); int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier)); if (blockDiff > 0) { // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate // at which deposits can be created and therefore limit the potential for deposits to // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes. int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit; int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator))); // Update base fee by adding the base fee delta and clamp the resulting value between // min and max. int256 newBaseFee = Arithmetic.clamp({ _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta, _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); // If we skipped more than one block, we also need to account for every empty block. // Empty block means there was no demand for deposits in that block, so we should // reflect this lack of demand in the fee. if (blockDiff > 1) { // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator) // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value // between min and max. newBaseFee = Arithmetic.clamp({ _value: Arithmetic.cdexp({ _coefficient: newBaseFee, _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)), _exponent: int256(blockDiff - 1) }), _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); } // Update new base fee, reset bought gas, and update block number. params.prevBaseFee = uint128(uint256(newBaseFee)); params.prevBoughtGas = 0; params.prevBlockNum = uint64(block.number); } // Make sure we can actually buy the resource amount requested by the user. params.prevBoughtGas += _amount; if (int256(uint256(params.prevBoughtGas)) > int256(uint256(config.maxResourceLimit))) { revert OutOfGas(); } // Determine the amount of ETH to be paid. uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee); // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei // during any 1 day period in the last 5 years, so should be fine. uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei); // Give the user a refund based on the amount of gas they used to do all of the work up to // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts // effectively like a dynamic stipend (with a minimum value). uint256 usedGas = _initialGas - gasleft(); if (gasCost > usedGas) { Burn.gas(gasCost - usedGas); } } /// @notice Virtual function that returns the resource config. /// Contracts that inherit this contract must implement this function. /// @return ResourceConfig function _resourceConfig() internal virtual returns (ResourceConfig memory); /// @notice Sets initial resource parameter values. /// This function must either be called by the initializer function of an upgradeable /// child contract. function __ResourceMetering_init() internal onlyInitializing { if (params.prevBlockNum == 0) { params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) }); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @title Types /// @notice Contains various types used throughout the Optimism contract system. library Types { /// @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1 /// timestamp that the output root is posted. This timestamp is used to verify that the /// finalization period has passed since the output root was submitted. /// @custom:field outputRoot Hash of the L2 output. /// @custom:field timestamp Timestamp of the L1 block that the output root was submitted in. /// @custom:field l2BlockNumber L2 block number that the output corresponds to. struct OutputProposal { bytes32 outputRoot; uint128 timestamp; uint128 l2BlockNumber; } /// @notice Struct representing the elements that are hashed together to generate an output root /// which itself represents a snapshot of the L2 state. /// @custom:field version Version of the output root. /// @custom:field stateRoot Root of the state trie at the block of this output. /// @custom:field messagePasserStorageRoot Root of the message passer storage trie. /// @custom:field latestBlockhash Hash of the block this output was generated from. struct OutputRootProof { bytes32 version; bytes32 stateRoot; bytes32 messagePasserStorageRoot; bytes32 latestBlockhash; } /// @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end /// user (as opposed to a system deposit transaction generated by the system). /// @custom:field from Address of the sender of the transaction. /// @custom:field to Address of the recipient of the transaction. /// @custom:field isCreation True if the transaction is a contract creation. /// @custom:field value Value to send to the recipient. /// @custom:field mint Amount of ETH to mint. /// @custom:field gasLimit Gas limit of the transaction. /// @custom:field data Data of the transaction. /// @custom:field l1BlockHash Hash of the block the transaction was submitted in. /// @custom:field logIndex Index of the log in the block the transaction was submitted in. struct UserDepositTransaction { address from; address to; bool isCreation; uint256 value; uint256 mint; uint64 gasLimit; bytes data; bytes32 l1BlockHash; uint256 logIndex; } /// @notice Struct representing a withdrawal transaction. /// @custom:field nonce Nonce of the withdrawal transaction /// @custom:field sender Address of the sender of the transaction. /// @custom:field target Address of the recipient of the transaction. /// @custom:field value Value to send to the recipient. /// @custom:field gasLimit Gas limit of the transaction. /// @custom:field data Data of the transaction. struct WithdrawalTransaction { uint256 nonce; address sender; address target; uint256 value; uint256 gasLimit; bytes data; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @custom:attribution https://github.com/bakaoh/solidity-rlp-encode /// @title RLPWriter /// @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's /// RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor /// modifications to improve legibility. library RLPWriter { /// @notice RLP encodes a byte string. /// @param _in The byte string to encode. /// @return out_ The RLP encoded string in bytes. function writeBytes(bytes memory _in) internal pure returns (bytes memory out_) { if (_in.length == 1 && uint8(_in[0]) < 128) { out_ = _in; } else { out_ = abi.encodePacked(_writeLength(_in.length, 128), _in); } } /// @notice RLP encodes a list of RLP encoded byte byte strings. /// @param _in The list of RLP encoded byte strings. /// @return list_ The RLP encoded list of items in bytes. function writeList(bytes[] memory _in) internal pure returns (bytes memory list_) { list_ = _flatten(_in); list_ = abi.encodePacked(_writeLength(list_.length, 192), list_); } /// @notice RLP encodes a string. /// @param _in The string to encode. /// @return out_ The RLP encoded string in bytes. function writeString(string memory _in) internal pure returns (bytes memory out_) { out_ = writeBytes(bytes(_in)); } /// @notice RLP encodes an address. /// @param _in The address to encode. /// @return out_ The RLP encoded address in bytes. function writeAddress(address _in) internal pure returns (bytes memory out_) { out_ = writeBytes(abi.encodePacked(_in)); } /// @notice RLP encodes a uint. /// @param _in The uint256 to encode. /// @return out_ The RLP encoded uint256 in bytes. function writeUint(uint256 _in) internal pure returns (bytes memory out_) { out_ = writeBytes(_toBinary(_in)); } /// @notice RLP encodes a bool. /// @param _in The bool to encode. /// @return out_ The RLP encoded bool in bytes. function writeBool(bool _in) internal pure returns (bytes memory out_) { out_ = new bytes(1); out_[0] = (_in ? bytes1(0x01) : bytes1(0x80)); } /// @notice Encode the first byte and then the `len` in binary form if `length` is more than 55. /// @param _len The length of the string or the payload. /// @param _offset 128 if item is string, 192 if item is list. /// @return out_ RLP encoded bytes. function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory out_) { if (_len < 56) { out_ = new bytes(1); out_[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } out_ = new bytes(lenLen + 1); out_[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { out_[i] = bytes1(uint8((_len / (256 ** (lenLen - i))) % 256)); } } } /// @notice Encode integer in big endian binary form with no leading zeroes. /// @param _x The integer to encode. /// @return out_ RLP encoded bytes. function _toBinary(uint256 _x) private pure returns (bytes memory out_) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } out_ = new bytes(32 - i); for (uint256 j = 0; j < out_.length; j++) { out_[j] = b[i++]; } } /// @custom:attribution https://github.com/Arachnid/solidity-stringutils /// @notice Copies a piece of memory to another location. /// @param _dest Destination location. /// @param _src Source location. /// @param _len Length of memory to copy. function _memcpy(uint256 _dest, uint256 _src, uint256 _len) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256 ** (32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /// @custom:attribution https://github.com/sammayo/solidity-rlp-encoder /// @notice Flattens a list of byte strings into one byte string. /// @param _list List of byte strings to flatten. /// @return out_ The flattened byte string. function _flatten(bytes[] memory _list) private pure returns (bytes memory out_) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } out_ = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(out_, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`. // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`. // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a // good first aproximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1; uint256 x = a; if (x >> 128 > 0) { x >>= 128; result <<= 64; } if (x >> 64 > 0) { x >>= 64; result <<= 32; } if (x >> 32 > 0) { x >>= 32; result <<= 16; } if (x >> 16 > 0) { x >>= 16; result <<= 8; } if (x >> 8 > 0) { x >>= 8; result <<= 4; } if (x >> 4 > 0) { x >>= 4; result <<= 2; } if (x >> 2 > 0) { result <<= 1; } // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) { result += 1; } return result; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /// @title Burn /// @notice Utilities for burning stuff. library Burn { /// @notice Burns a given amount of ETH. /// @param _amount Amount of ETH to burn. function eth(uint256 _amount) internal { new Burner{ value: _amount }(); } /// @notice Burns a given amount of gas. /// @param _amount Amount of gas to burn. function gas(uint256 _amount) internal view { uint256 i = 0; uint256 initialGas = gasleft(); while (initialGas - gasleft() < _amount) { ++i; } } } /// @title Burner /// @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to /// the contract from the circulating supply. Self-destructing is the only way to remove ETH /// from the circulating supply. contract Burner { constructor() payable { selfdestruct(payable(address(this))); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol"; /// @title Arithmetic /// @notice Even more math than before. library Arithmetic { /// @notice Clamps a value between a minimum and maximum. /// @param _value The value to clamp. /// @param _min The minimum value. /// @param _max The maximum value. /// @return The clamped value. function clamp(int256 _value, int256 _min, int256 _max) internal pure returns (int256) { return SignedMath.min(SignedMath.max(_value, _min), _max); } /// @notice (c)oefficient (d)enominator (exp)onentiation function. /// Returns the result of: c * (1 - 1/d)^exp. /// @param _coefficient Coefficient of the function. /// @param _denominator Fractional denominator. /// @param _exponent Power function exponent. /// @return Result of c * (1 - 1/d)^exp. function cdexp(int256 _coefficient, int256 _denominator, int256 _exponent) internal pure returns (int256) { return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } function powWad(int256 x, int256 y) internal pure returns (int256) { // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y) return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0. } function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert("EXP_OVERFLOW"); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5**18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } function lnWad(int256 x) internal pure returns (int256 r) { unchecked { require(x > 0, "UNDEFINED"); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) int256 k = int256(log2(uint256(x))) - 96; x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function log2(uint256 x) internal pure returns (uint256 r) { require(x > 0, "UNDEFINED"); assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) r := or(r, shl(2, lt(0xf, shr(r, x)))) r := or(r, shl(1, lt(0x3, shr(r, x)))) r := or(r, lt(0x1, shr(r, x))) } } }
{ "remappings": [ "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@rari-capital/solmate/=lib/solmate/", "@lib-keccak/=lib/lib-keccak/contracts/lib/", "@solady/=lib/solady/src/", "forge-std/=lib/forge-std/src/", "ds-test/=lib/forge-std/lib/ds-test/src/", "safe-contracts/=lib/safe-contracts/contracts/", "kontrol-cheatcodes/=lib/kontrol-cheatcodes/src/", "@solady-test/=lib/lib-keccak/lib/solady/test/", "lib-keccak/=lib/lib-keccak/contracts/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "solady/=lib/solady/", "solmate/=lib/solmate/src/" ], "optimizer": { "enabled": true, "runs": 999999 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "none" }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } }, "evmVersion": "london", "viaIR": false, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_recipient","type":"address"},{"internalType":"uint256","name":"_minWithdrawalAmount","type":"uint256"},{"internalType":"enum FeeVault.WithdrawalNetwork","name":"_withdrawalNetwork","type":"uint8"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"address","name":"from","type":"address"}],"name":"Withdrawal","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"enum FeeVault.WithdrawalNetwork","name":"withdrawalNetwork","type":"uint8"}],"name":"Withdrawal","type":"event"},{"inputs":[],"name":"MIN_WITHDRAWAL_AMOUNT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RECIPIENT","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WITHDRAWAL_NETWORK","outputs":[{"internalType":"enum FeeVault.WithdrawalNetwork","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"l1FeeWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalProcessed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
6080604052600436106100745760003560e01c806384411d651161004e57806384411d651461014b578063d0e12f901461016f578063d3e5792b146101b0578063d4ff9218146101e457600080fd5b80630d9019e1146100805780633ccfd60b146100de57806354fd4d50146100f557600080fd5b3661007b57005b600080fd5b34801561008c57600080fd5b506100b47f000000000000000000000000b2aa0c2c4fd6bfcbf699d4c787cd6cc0dc461a9d81565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b3480156100ea57600080fd5b506100f3610217565b005b34801561010157600080fd5b5061013e6040518060400160405280600581526020017f312e342e3100000000000000000000000000000000000000000000000000000081525081565b6040516100d5919061066e565b34801561015757600080fd5b5061016160005481565b6040519081526020016100d5565b34801561017b57600080fd5b506101a37f000000000000000000000000000000000000000000000000000000000000000081565b6040516100d591906106f2565b3480156101bc57600080fd5b506101617f000000000000000000000000000000000000000000000000002386f26fc1000081565b3480156101f057600080fd5b507f000000000000000000000000b2aa0c2c4fd6bfcbf699d4c787cd6cc0dc461a9d6100b4565b7f000000000000000000000000000000000000000000000000002386f26fc100004710156102f2576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604a60248201527f4665655661756c743a207769746864726177616c20616d6f756e74206d75737460448201527f2062652067726561746572207468616e206d696e696d756d207769746864726160648201527f77616c20616d6f756e7400000000000000000000000000000000000000000000608482015260a4015b60405180910390fd5b6000479050806000808282546103089190610706565b9091555050604080518281527f000000000000000000000000b2aa0c2c4fd6bfcbf699d4c787cd6cc0dc461a9d73ffffffffffffffffffffffffffffffffffffffff166020820152338183015290517fc8a211cc64b6ed1b50595a9fcb1932b6d1e5a6e8ef15b60e5b1f988ea9086bba9181900360600190a17f38e04cbeb8c10f8f568618aa75be0f10b6729b8b4237743b4de20cbcde2839ee817f000000000000000000000000b2aa0c2c4fd6bfcbf699d4c787cd6cc0dc461a9d337f00000000000000000000000000000000000000000000000000000000000000006040516103f69493929190610745565b60405180910390a160017f0000000000000000000000000000000000000000000000000000000000000000600181111561043257610432610688565b0361054b5760007f000000000000000000000000b2aa0c2c4fd6bfcbf699d4c787cd6cc0dc461a9d73ffffffffffffffffffffffffffffffffffffffff168260405160006040518083038185875af1925050503d80600081146104b1576040519150601f19603f3d011682016040523d82523d6000602084013e6104b6565b606091505b5050905080610547576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603060248201527f4665655661756c743a206661696c656420746f2073656e642045544820746f2060448201527f4c322066656520726563697069656e740000000000000000000000000000000060648201526084016102e9565b5050565b604080516020810182526000815290517fe11013dd0000000000000000000000000000000000000000000000000000000081527342000000000000000000000000000000000000109163e11013dd9184916105ce917f000000000000000000000000b2aa0c2c4fd6bfcbf699d4c787cd6cc0dc461a9d916188b891600401610786565b6000604051808303818588803b1580156105e757600080fd5b505af11580156105fb573d6000803e3d6000fd5b505050505050565b6000815180845260005b818110156106295760208185018101518683018201520161060d565b8181111561063b576000602083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b6020815260006106816020830184610603565b9392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b600281106106ee577f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b9052565b6020810161070082846106b7565b92915050565b60008219821115610740577f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b500190565b84815273ffffffffffffffffffffffffffffffffffffffff8481166020830152831660408201526080810161077d60608301846106b7565b95945050505050565b73ffffffffffffffffffffffffffffffffffffffff8416815263ffffffff8316602082015260606040820152600061077d606083018461060356fea164736f6c634300080f000a
Deployed Bytecode
0x6080604052600436106100745760003560e01c806384411d651161004e57806384411d651461014b578063d0e12f901461016f578063d3e5792b146101b0578063d4ff9218146101e457600080fd5b80630d9019e1146100805780633ccfd60b146100de57806354fd4d50146100f557600080fd5b3661007b57005b600080fd5b34801561008c57600080fd5b506100b47f000000000000000000000000b2aa0c2c4fd6bfcbf699d4c787cd6cc0dc461a9d81565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020015b60405180910390f35b3480156100ea57600080fd5b506100f3610217565b005b34801561010157600080fd5b5061013e6040518060400160405280600581526020017f312e342e3100000000000000000000000000000000000000000000000000000081525081565b6040516100d5919061066e565b34801561015757600080fd5b5061016160005481565b6040519081526020016100d5565b34801561017b57600080fd5b506101a37f000000000000000000000000000000000000000000000000000000000000000081565b6040516100d591906106f2565b3480156101bc57600080fd5b506101617f000000000000000000000000000000000000000000000000002386f26fc1000081565b3480156101f057600080fd5b507f000000000000000000000000b2aa0c2c4fd6bfcbf699d4c787cd6cc0dc461a9d6100b4565b7f000000000000000000000000000000000000000000000000002386f26fc100004710156102f2576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604a60248201527f4665655661756c743a207769746864726177616c20616d6f756e74206d75737460448201527f2062652067726561746572207468616e206d696e696d756d207769746864726160648201527f77616c20616d6f756e7400000000000000000000000000000000000000000000608482015260a4015b60405180910390fd5b6000479050806000808282546103089190610706565b9091555050604080518281527f000000000000000000000000b2aa0c2c4fd6bfcbf699d4c787cd6cc0dc461a9d73ffffffffffffffffffffffffffffffffffffffff166020820152338183015290517fc8a211cc64b6ed1b50595a9fcb1932b6d1e5a6e8ef15b60e5b1f988ea9086bba9181900360600190a17f38e04cbeb8c10f8f568618aa75be0f10b6729b8b4237743b4de20cbcde2839ee817f000000000000000000000000b2aa0c2c4fd6bfcbf699d4c787cd6cc0dc461a9d337f00000000000000000000000000000000000000000000000000000000000000006040516103f69493929190610745565b60405180910390a160017f0000000000000000000000000000000000000000000000000000000000000000600181111561043257610432610688565b0361054b5760007f000000000000000000000000b2aa0c2c4fd6bfcbf699d4c787cd6cc0dc461a9d73ffffffffffffffffffffffffffffffffffffffff168260405160006040518083038185875af1925050503d80600081146104b1576040519150601f19603f3d011682016040523d82523d6000602084013e6104b6565b606091505b5050905080610547576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603060248201527f4665655661756c743a206661696c656420746f2073656e642045544820746f2060448201527f4c322066656520726563697069656e740000000000000000000000000000000060648201526084016102e9565b5050565b604080516020810182526000815290517fe11013dd0000000000000000000000000000000000000000000000000000000081527342000000000000000000000000000000000000109163e11013dd9184916105ce917f000000000000000000000000b2aa0c2c4fd6bfcbf699d4c787cd6cc0dc461a9d916188b891600401610786565b6000604051808303818588803b1580156105e757600080fd5b505af11580156105fb573d6000803e3d6000fd5b505050505050565b6000815180845260005b818110156106295760208185018101518683018201520161060d565b8181111561063b576000602083870101525b50601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b6020815260006106816020830184610603565b9392505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b600281106106ee577f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b9052565b6020810161070082846106b7565b92915050565b60008219821115610740577f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b500190565b84815273ffffffffffffffffffffffffffffffffffffffff8481166020830152831660408201526080810161077d60608301846106b7565b95945050505050565b73ffffffffffffffffffffffffffffffffffffffff8416815263ffffffff8316602082015260606040820152600061077d606083018461060356fea164736f6c634300080f000a
Deployed Bytecode Sourcemap
436:836:17:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;820:34:28;;;;;;;;;;;;;;;;;;190:42:33;178:55;;;160:74;;148:2;133:18;820:34:28;;;;;;;;2732:832;;;;;;;;;;;;;:::i;:::-;;519:40:17;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;1188:29:28:-;;;;;;;;;;;;;;;;;;;1152:25:33;;;1140:2;1125:18;1188:29:28;1006:177:33;927:53:28;;;;;;;;;;;;;;;;;;;;;;:::i;716:46::-;;;;;;;;;;;;;;;1184:86:17;;;;;;;;;;-1:-1:-1;1254:9:17;1184:86;;2732:832:28;2817:21;2792;:46;;2771:167;;;;;;;2115:2:33;2771:167:28;;;2097:21:33;2154:2;2134:18;;;2127:30;2193:34;2173:18;;;2166:62;2264:34;2244:18;;;2237:62;2336:12;2315:19;;;2308:41;2366:19;;2771:167:28;;;;;;;;;2949:13;2965:21;2949:37;;3014:5;2996:14;;:23;;;;;;;:::i;:::-;;;;-1:-1:-1;;3035:40:28;;;2885:25:33;;;3053:9:28;2929:42:33;3007:15;3002:2;2987:18;;2980:43;3064:10:28;3039:18:33;;;3032:43;3035:40:28;;;;;;;2873:2:33;3035:40:28;;;3090:60;3101:5;3108:9;3119:10;3131:18;3090:60;;;;;;;;;:::i;:::-;;;;;;;;3187:20;3165:18;:42;;;;;;;;:::i;:::-;;3161:397;;3224:12;3241:9;:14;;3264:5;3241:37;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;3223:55;;;3300:7;3292:68;;;;;;;4020:2:33;3292:68:28;;;4002:21:33;4059:2;4039:18;;;4032:30;4098:34;4078:18;;;4071:62;4169:18;4149;;;4142:46;4205:19;;3292:68:28;3818:412:33;3292:68:28;3209:162;2761:803;2732:832::o;3161:397::-;3524:9;;;;;;;;-1:-1:-1;3524:9:28;;3391:156;;;;;1905:42:23;;3391:68:28;;3468:5;;3391:156;;3493:9;;1112:6;;3391:156;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2761:803;2732:832::o;245:531:33:-;287:3;325:5;319:12;352:6;347:3;340:19;377:1;387:162;401:6;398:1;395:13;387:162;;;463:4;519:13;;;515:22;;509:29;491:11;;;487:20;;480:59;416:12;387:162;;;567:6;564:1;561:13;558:87;;;633:1;626:4;617:6;612:3;608:16;604:27;597:38;558:87;-1:-1:-1;690:2:33;678:15;695:66;674:88;665:98;;;;765:4;661:109;;245:531;-1:-1:-1;;245:531:33:o;781:220::-;930:2;919:9;912:21;893:4;950:45;991:2;980:9;976:18;968:6;950:45;:::i;:::-;942:53;781:220;-1:-1:-1;;;781:220:33:o;1188:184::-;1240:77;1237:1;1230:88;1337:4;1334:1;1327:15;1361:4;1358:1;1351:15;1377:302;1466:1;1459:5;1456:12;1446:200;;1502:77;1499:1;1492:88;1603:4;1600:1;1593:15;1631:4;1628:1;1621:15;1446:200;1655:18;;1377:302::o;1684:224::-;1838:2;1823:18;;1850:52;1827:9;1884:6;1850:52;:::i;:::-;1684:224;;;;:::o;2396:282::-;2436:3;2467:1;2463:6;2460:1;2457:13;2454:193;;;2503:77;2500:1;2493:88;2604:4;2601:1;2594:15;2632:4;2629:1;2622:15;2454:193;-1:-1:-1;2663:9:33;;2396:282::o;3086:517::-;3337:25;;;3381:42;3459:15;;;3454:2;3439:18;;3432:43;3511:15;;3506:2;3491:18;;3484:43;3324:3;3309:19;;3536:61;3593:2;3578:18;;3570:6;3536:61;:::i;:::-;3086:517;;;;;;;:::o;4235:424::-;4448:42;4440:6;4436:55;4425:9;4418:74;4540:10;4532:6;4528:23;4523:2;4512:9;4508:18;4501:51;4588:2;4583;4572:9;4568:18;4561:30;4399:4;4608:45;4649:2;4638:9;4634:18;4626:6;4608:45;:::i
Swarm Source
none
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.